Zobrazeno 1 - 2
of 2
pro vyhledávání: '"Miriakov, Nikita"'
Autor:
Putzky, Patrick, Karkalousos, Dimitrios, Teuwen, Jonas, Miriakov, Nikita, Bakker, Bart, Caan, Matthan, Welling, Max
We, team AImsterdam, summarize our submission to the fastMRI challenge (Zbontar et al., 2018). Our approach builds on recent advances in invertible learning to infer models as presented in Putzky and Welling (2019). Both, our single-coil and our mult
Externí odkaz:
http://arxiv.org/abs/1910.08952
Autor:
Johnson, Patricia M., Jeong, Geunu, Hammernik, Kerstin, Schlemper, Jo, Qin, Chen, Duan, Jinming, Rueckert, Daniel, Lee, Jingu, Pezzotti, Nicola, de Weerdt, Elwin, Yousefi, Sahar, Elmahdy, Mohamed S., van Gemert, Jeroen Hendrikus Franciscus, Schülke, Christophe, Doneva, Mariya, Nielsen, Tim, Kastryulin, Sergey, Lelieveldt, Boudewijn P. F., van Osch, Matthias J. P., Staring, Marius, Chen, Eric Z., Wang, Puyang, Chen, Xiao, Chen, Terrence, Patel, Vishal M., Sun, Shanhui, Shin, Hyungseob, Jun, Yohan, Eo, Taejoon, Kim, Sewon, Kim, Taeseong, Hwang, Dosik, Putzky, Patrick, Karkalousos, Dimitrios, Teuwen, Jonas, Miriakov, Nikita, Bakker, Bart, Caan, Matthan, Welling, Max, Muckley, Matthew J., Knoll, Florian, Haq, Nandinee, Johnson, Patricia, Maier, Andreas, Würfl, Tobias, Yoo, Jaejun
Publikováno v:
Machine Learning for Medical Image Reconstruction ISBN: 9783030885519
MLMIR@MICCAI
Machine Learning for Medical Image Reconstruction-4th International Workshop, MLMIR 2021, Held in Conjunction with MICCAI 2021, Proceedings, 12964 LNCS, 25-34
MLMIR@MICCAI
Machine Learning for Medical Image Reconstruction-4th International Workshop, MLMIR 2021, Held in Conjunction with MICCAI 2021, Proceedings, 12964 LNCS, 25-34
The 2019 fastMRI challenge was an open challenge designed to advance research in the field of machine learning for MR image reconstruction. The goal for the participants was to reconstruct undersampled MRI k-space data. The original challenge left an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5b26c80b98598516c3dca1d580f44a20
https://doi.org/10.1007/978-3-030-88552-6_3
https://doi.org/10.1007/978-3-030-88552-6_3