Zobrazeno 1 - 10
of 66
pro vyhledávání: '"Mireille Capitaine"'
Publikováno v:
Electronic Journal of Probability
Electronic Journal of Probability, 2021, 26, ⟨10.1214/21-EJP666⟩
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2021, 26 (none), ⟨10.1214/21-EJP666⟩
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2021, 26, ⟨10.1214/21-EJP666⟩
Electronic Journal of Probability, 2021, 26, ⟨10.1214/21-EJP666⟩
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2021, 26 (none), ⟨10.1214/21-EJP666⟩
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2021, 26, ⟨10.1214/21-EJP666⟩
We consider a square random matrix of size $N$ of the form $P(Y,A)$ where $P$ is a noncommutative polynomial, $A$ is a tuple of deterministic matrices converging in $\ast$-distribution, when $N$ goes to infinity, towards a tuple $a$ in some $\mathcal
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4ff451ed2f37abb67b01666c418af66f
https://hal.science/hal-03357298/document
https://hal.science/hal-03357298/document
Autor:
Mireille Capitaine
Publikováno v:
Random Matrices: Theory and Applications
Random Matrices: Theory and Applications, World Scientific, 2020, 09 (04), pp.2050013. ⟨10.1142/S2010326320500136⟩
Random Matrices: Theory and Applications, World Scientific, 2020, 09 (4), ⟨10.1142/S2010326320500136⟩
Random Matrices: Theory and Applications, 2020, 09 (04), pp.2050013. ⟨10.1142/S2010326320500136⟩
Random Matrices: Theory and Applications, World Scientific, 2020, 09 (04), pp.2050013. ⟨10.1142/S2010326320500136⟩
Random Matrices: Theory and Applications, World Scientific, 2020, 09 (4), ⟨10.1142/S2010326320500136⟩
Random Matrices: Theory and Applications, 2020, 09 (04), pp.2050013. ⟨10.1142/S2010326320500136⟩
International audience; We study the fluctuations associated to the a.s. convergence of the outliers established by Belinschi–Bercovici–Capitaine of an Hermitian polynomial in a complex Wigner matrix and a spiked deterministic real diagonal matri
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3845cac74fbf816e3de14cd2a82b12b0
https://hal.archives-ouvertes.fr/hal-03038525
https://hal.archives-ouvertes.fr/hal-03038525
Autor:
Mireille Capitaine, Charles Bordenave
Publikováno v:
Communications on Pure and Applied Mathematics
Communications on Pure and Applied Mathematics, Wiley, 2016, 69 (11), pp.2131-2194. ⟨10.1002/cpa.21629⟩
Communications on Pure and Applied Mathematics, 2016, 69 (11), pp.2131-2194. ⟨10.1002/cpa.21629⟩
Communications on Pure and Applied Mathematics, Wiley, 2016, 69 (11), pp.2131-2194. ⟨10.1002/cpa.21629⟩
Communications on Pure and Applied Mathematics, 2016, 69 (11), pp.2131-2194. ⟨10.1002/cpa.21629⟩
We consider a square random matrix of size N of the form A + Y where A is deterministic and Y has iid entries with variance 1/N. Under mild assumptions, as N grows, the empirical distribution of the eigenvalues of A+Y converges weakly to a limit prob
Autor:
P Petit, Jean Brossard, Patrick Cattiaux, Antoine Lejay, Mireille Capitaine, Peter Kratz, Benedikt Wilbertz, Emmanuel Boissard, Rajeev Bhaskaran, Denis Villemonais, Florian Bouguet, Paul McGill, Laurent Miclo, Arnaud Guillin, Henri Elad Altman, Koléhé Abdoulaye Coulibaly-Pasquier, Gilles Pagès, Hiroshi Tsukada, Etienne Pardoux, Laurent Serlet, Nicolas Champagnat, Christophe Leuridan
Publikováno v:
Donati-Martin, Catherine; Lejay, Antoine; Rouault, Alain. Springer, 2215, 2018, Lecture notes in mathematics, ⟨10.1007/978-3-319-92420-5⟩
Lecture Notes in Mathematics ISBN: 9783319924199
Donati-Martin, Catherine; Lejay, Antoine; Rouault, Alain. 2215, Springer, 2018, Lecture notes in mathematics, ⟨10.1007/978-3-319-92420-5⟩
Lecture Notes in Mathematics ISBN: 9783319924199
Donati-Martin, Catherine; Lejay, Antoine; Rouault, Alain. 2215, Springer, 2018, Lecture notes in mathematics, ⟨10.1007/978-3-319-92420-5⟩
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6356160ea13a12ec9ee1746db4fbc917
https://inria.hal.science/hal-01931202
https://inria.hal.science/hal-01931202
Publikováno v:
ALEA : Latin American Journal of Probability and Mathematical Statistics
ALEA : Latin American Journal of Probability and Mathematical Statistics, Instituto Nacional de Matemática Pura e Aplicada, In press
ALEA : Latin American Journal of Probability and Mathematical Statistics, Instituto Nacional de Matemática Pura e Aplicada, 2021, 18 (1), pp.129-165. ⟨10.30757/ALEA.v18-07⟩
ALEA : Latin American Journal of Probability and Mathematical Statistics, 2021, 18 (1), pp.129-165. ⟨10.30757/ALEA.v18-07⟩
ALEA : Latin American Journal of Probability and Mathematical Statistics, Instituto Nacional de Matemática Pura e Aplicada, In press
ALEA : Latin American Journal of Probability and Mathematical Statistics, Instituto Nacional de Matemática Pura e Aplicada, 2021, 18 (1), pp.129-165. ⟨10.30757/ALEA.v18-07⟩
ALEA : Latin American Journal of Probability and Mathematical Statistics, 2021, 18 (1), pp.129-165. ⟨10.30757/ALEA.v18-07⟩
In this paper, we investigate the fluctuations of a unit eigenvector associated to an outlier in the spectrum of a spiked $N\times N$ complex Deformed Wigner matrix $M_N$: $M_N =W_N/\sqrt{N} + A_N$ where $W_N$ is an $N \times N$ Hermitian Wigner matr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::10e1600c18273cca4eae68d7a706ce19
Autor:
Mireille Capitaine
Publikováno v:
Séminaire de Probabilités XLIX ISBN: 9783319924199
We consider an Information-Plus-Noise type matrix where the Information matrix is a spiked matrix. When some eigenvalues of the random matrix separate from the bulk, we study how the corresponding eigenvectors project onto those of the spikes. Note t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7984110068e464aa0cbfbb7648cd92f4
https://doi.org/10.1007/978-3-319-92420-5_4
https://doi.org/10.1007/978-3-319-92420-5_4
Publikováno v:
Preliminary version. Comments/observations/corrections are welcome!. 2017
International Mathematics Research Notices
International Mathematics Research Notices, Oxford University Press (OUP), 2021, 2021 (4), pp.2588-2641. ⟨10.1093/imrn/rnz080⟩
International Mathematics Research Notices, Oxford University Press (OUP), 2019, ⟨10.1093/imrn/rnz080⟩
International Mathematics Research Notices, 2021, 2021 (4), pp.2588-2641. ⟨10.1093/imrn/rnz080⟩
International Mathematics Research Notices
International Mathematics Research Notices, Oxford University Press (OUP), 2021, 2021 (4), pp.2588-2641. ⟨10.1093/imrn/rnz080⟩
International Mathematics Research Notices, Oxford University Press (OUP), 2019, ⟨10.1093/imrn/rnz080⟩
International Mathematics Research Notices, 2021, 2021 (4), pp.2588-2641. ⟨10.1093/imrn/rnz080⟩
Given a selfadjoint polynomial $P(X,Y)$ in two noncommuting selfadjoint indeterminates, we investigate the asymptotic eigenvalue behavior of the random matrix $P(A\_N,B\_N)$, where $A\_N$ and $B\_N$ are independent Hermitian random matrices and the d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bde419d0a2535186c395003d1dc9d95b
http://arxiv.org/abs/1703.08102
http://arxiv.org/abs/1703.08102
Publikováno v:
Annals of Probability
Annals of Probability, Institute of Mathematical Statistics, 2017, 45 (6A), pp.3571-3625. ⟨10.1214/16-AOP1144⟩
Annals of Probability, Institute of Mathematical Statistics, 2017, 45 (6A), pp.3571-3625
Annals of Probability, 2017, 45 (6A), pp.3571-3625. ⟨10.1214/16-AOP1144⟩
Ann. Probab. 45, no. 6A (2017), 3571-3625
Annals of Probability, Institute of Mathematical Statistics, 2017, 45 (6A), pp.3571-3625. ⟨10.1214/16-AOP1144⟩
Annals of Probability, Institute of Mathematical Statistics, 2017, 45 (6A), pp.3571-3625
Annals of Probability, 2017, 45 (6A), pp.3571-3625. ⟨10.1214/16-AOP1144⟩
Ann. Probab. 45, no. 6A (2017), 3571-3625
We investigate the asymptotic behavior of the eigenvalues of the sum A+U*BU, where A and B are deterministic N by N Hermitian matrices having respective limiting compactly supported distributions \mu, \nu, and U is a random N by N unitary matrix dist
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eb7558f51f36ca7aca9f1687021c8b96
https://hal.archives-ouvertes.fr/hal-01095551v2/file/Unitary-April-2015.pdf
https://hal.archives-ouvertes.fr/hal-01095551v2/file/Unitary-April-2015.pdf
Publikováno v:
Journal of Functional Analysis
Journal of Functional Analysis, Elsevier, 2017, 273 (12), pp.3901-3963. ⟨10.1016/j.jfa.2017.07.010⟩
Journal of Functional Analysis, 2017, 273 (12), pp.3901-3963. ⟨10.1016/j.jfa.2017.07.010⟩
Journal of Functional Analysis, Elsevier, 2017, 273 (12), pp.3901-3963. ⟨10.1016/j.jfa.2017.07.010⟩
Journal of Functional Analysis, 2017, 273 (12), pp.3901-3963. ⟨10.1016/j.jfa.2017.07.010⟩
On the one hand, we prove that almost surely, for large dimension, there is no eigenvalue of a Hermitian polynomial in independent Wigner and deterministic matrices, in any interval lying at some distance from the supports of a sequence of determinis
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e87a2caaad8a431db7d622a5c505b237
http://arxiv.org/abs/1611.07440
http://arxiv.org/abs/1611.07440
Autor:
Mireille Capitaine, Sandrine Péché
Publikováno v:
Probability Theory and Related Fields
Probability Theory and Related Fields, 2016, 165 (1), pp.117-161. ⟨10.1007/s00440-015-0628-6⟩
Probability Theory and Related Fields, Springer Verlag, 2016, 165 (1), pp.117-161. ⟨10.1007/s00440-015-0628-6⟩
Probability Theory and Related Fields, 2016, 165 (1), pp.117-161. ⟨10.1007/s00440-015-0628-6⟩
Probability Theory and Related Fields, Springer Verlag, 2016, 165 (1), pp.117-161. ⟨10.1007/s00440-015-0628-6⟩
We consider a full rank deformation of the GUE $W_N+A_N$ where $A_N$ is a full rank Hermitian matrix of size $N$ and $W_N$ is a GUE. The empirical eigenvalue distribution $\mu_{A_N}$ of $A_N$ converges to a probability distribution $\nu$. We identify
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8aeb329d5026c0e2800ca85cc5d9b8d6
https://hal.science/hal-01011501
https://hal.science/hal-01011501