Zobrazeno 1 - 10
of 131
pro vyhledávání: '"Miranda, Rick"'
We show the existence of cones over 8-dimensional rational spheres at the boundary of the Mori cone of the blow-up of the plane at $s\geq 13$ very general points. This gives evidence for De Fernex's strong $\Delta$-conjecture, which is known to imply
Externí odkaz:
http://arxiv.org/abs/2310.10507
Autor:
Dumitrescu, Olivia, Miranda, Rick
We investigate the study of smooth irreducible rational curves in $Y_s^r$, a general blowup of $\mathbb{P}^r$ at $s$ general points, whose normal bundle splits as a direct sum of line bundles all of degree $i$, for $i \in \{-1,0,1\}$: we call these $
Externí odkaz:
http://arxiv.org/abs/2205.13605
In this paper we develop a technique for discovering (non-effective) irrational rays at the boundary of the Mori cone for linear systems on a general blowup of the plane, and give examples of such irrational rays.
Comment: 14 pages. Comments wel
Comment: 14 pages. Comments wel
Externí odkaz:
http://arxiv.org/abs/2201.08634
Autor:
Miranda, Rick, Zanardini, Aline
In this paper we construct a moduli space for marked rational elliptic surfaces of index two as a non-complete toric variety of dimension nine. We also construct compactifications of this moduli space, which are obtained as quotients of $\mathbb{A}^{
Externí odkaz:
http://arxiv.org/abs/2111.07294
Autor:
Ciliberto, Ciro, Miranda, Rick
In this paper we prove that certain linear systems (and all their multiples) of plane curves with general base points and zero--self intersection are empty, thus exhibiting further examples of rays at the boundary of the Mori cone of a general blow--
Externí odkaz:
http://arxiv.org/abs/2111.02923
Autor:
Ciliberto, Ciro, Miranda, Rick
In this paper we prove that no multiple of the linear system of plane curves of degree $d\geq 4$ with a point of multiplicity $d-m$ (with $2 \leq m \leq d$) and $m(2d-m)$ simple general points is effective.
Comment: This paper is dedicated to Gi
Comment: This paper is dedicated to Gi
Externí odkaz:
http://arxiv.org/abs/2111.02920
Autor:
Dumitrescu, Olivia, Miranda, Rick
In this paper we study $(i)$-curves with $i\in \{-1, 0, 1\}$ in the blown up projective space $\mathbb{P}^r$ in general points. The notion of $(-1)$-curves was analyzed in the early days of mirror symmetry by Kontsevich with the motivation of countin
Externí odkaz:
http://arxiv.org/abs/2104.14141
Autor:
Dumitrescu, Olivia, Miranda, Rick
This article is motivated by the authors interest in the geometry of the Mori dream space $\mathbb{P}^4$ blown up in $8$ general points. In this article we develop the necessary technique for determining Weyl orbits of linear cycles for the four-dime
Externí odkaz:
http://arxiv.org/abs/2103.08040
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Miranda, Rick, Zanardini, Aline
Publikováno v:
In Indagationes Mathematicae September 2022 33(5):919-935