Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Mira Valkonen"'
Autor:
Pekka Ruusuvuori, Masi Valkonen, Kimmo Kartasalo, Mira Valkonen, Tapio Visakorpi, Matti Nykter, Leena Latonen
Publikováno v:
Heliyon, Vol 8, Iss 1, Pp e08762- (2022)
Histological changes in tissue are of primary importance in pathological research and diagnosis. Automated histological analysis requires ability to computationally separate pathological alterations from normal tissue. Conventional histopathological
Externí odkaz:
https://doaj.org/article/2242782a1d2044799139317878fa7540
Publikováno v:
Journal of Pathology Informatics, Vol 7, Iss 1, Pp 5-5 (2016)
This paper describes work presented at the Nordic Symposium on Digital Pathology 2015, in Linköping, Sweden. Prostatic intraepithelial neoplasia (PIN) represents premalignant tissue involving epithelial growth confined in the lumen of prostatic acin
Externí odkaz:
https://doaj.org/article/30f59e3005544dcd8e83f200c1e90cc6
Publikováno v:
Patterns. 4:100725
Conventional histopathology has relied on chemical staining for over a century. The staining process makes tissue sections visible to the human eye through a tedious and labor-intensive procedure that alters the tissue irreversibly, preventing repeat
Autor:
Jorma Isola, Anna Saxlin, Teemu Tolonen, Onni Ylinen, Ville Muhonen, Matti Nykter, Pekka Ruusuvuori, Mira Valkonen
Publikováno v:
IEEE Transactions on Medical Imaging. 39:534-542
Immunohistochemistry (IHC) of ER, PR, and Ki-67 are routinely used assays in breast cancer diagnostics. Determination of the proportion of stained cells (labeling index) should be restricted on malignant epithelial cells, carefully avoiding tumor inf
Nucleus detection is a fundamental task in histological image analysis and an important tool for many follow up analyses. It is known that sample preparation and scanning procedure of histological slides introduce a great amount of variability to the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=pmid_dedup__::8ebe3944ce90e2289ff02e6b6c7cf9ef
https://trepo.tuni.fi/handle/10024/137032
https://trepo.tuni.fi/handle/10024/137032
Autor:
Kaisa Liimatainen, Mira Valkonen, Pekka Ruusuvuori, Kimmo Kartasalo, Matti Nykter, Leena Latonen
Publikováno v:
Cytometry Part A. 91:555-565
Digital pathology has led to a demand for automated detection of regions of interest, such as cancerous tissue, from scanned whole slide images. With accurate methods using image analysis and machine learning, significant speed-up, and savings in cos
Autor:
Ugur Halici, Rishab Gargeya, Quincy Wong, Hady Ahmady Phoulady, David Tellez, Bram van Ginneken, Andrew H. Beck, Nico Karssemeijer, Jeroen van der Laak, Nassir Navab, Jonas Annuscheit, Leena Latonen, Kaisa Liimatainen, Talha Qaiser, Dayong Wang, Quirine F. Manson, Aoxiao Zhong, Shigeto Seno, Yee-Wah Tsang, Rui Venâncio, Ismael Serrano, Daniel Racoceanu, N. Stathonikos, Muhammad Shaban, Stefanie Demirci, M. Milagro Fernández-Carrobles, Babak Ehteshami Bejnordi, Matt Berseth, Mustafa Umit Oner, Geert Litjens, Kimmo Kartasalo, Hideo Matsuda, Maschenka Balkenhol, Huangjing Lin, Elia Bruni, Hao Chen, Seiryo Watanabe, A. Kalinovsky, Marcory C. R. F. van Dijk, Ami George, Nasir M. Rajpoot, Francisco Beca, Quanzheng Li, Meyke Hermsen, Mira Valkonen, Oscar Deniz, Alexei Vylegzhanin, Vitali Liauchuk, Ruqayya Awan, Mitko Veta, Korsuk Sirinukunwattana, Gloria Bueno, Peter Hufnagl, Christian Haß, Vassili Kovalev, Vitali Khvatkov, Rengul Cetin-Atalay, Humayun Irshad, Oren Kraus, Qi Dou, Pekka Ruusuvuori, Aditya Khosla, Bharti Mungal, Pheng-Ann Heng, Oscar Geessink, Paul J. van Diest, Shadi Albarqouni, Peter Bult, Yoichi Takenaka
Publikováno v:
JAMA Cardiology
JAMA Cardiology, American Medical Association 2017, 318, ⟨10.1001/jama.2017.14585⟩
Jama : Journal of the American Medical Association, 318, 2199-2210
JAMA Neurology, 318(22), 2199-2210. American Medical Association (AMA)
Jama : Journal of the American Medical Association, 318, 22, pp. 2199-2210
JAMA-The Journal of The American Medical Association, 318(22), 2199. American Medical Association
JAMA Cardiology, American Medical Association 2017, 318, ⟨10.1001/jama.2017.14585⟩
Jama : Journal of the American Medical Association, 318, 2199-2210
JAMA Neurology, 318(22), 2199-2210. American Medical Association (AMA)
Jama : Journal of the American Medical Association, 318, 22, pp. 2199-2210
JAMA-The Journal of The American Medical Association, 318(22), 2199. American Medical Association
IMPORTANCE: Application of deep learning algorithms to whole-slide pathology imagescan potentially improve diagnostic accuracy and efficiency. OBJECTIVE: Assess the performance of automated deep learning algorithms at detecting metastases in hematoxy
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c5e2e1ebc60e746d57a0deffa5ee651b
https://hal.archives-ouvertes.fr/hal-03140979/document
https://hal.archives-ouvertes.fr/hal-03140979/document
Autor:
Kaisa Liimatainen, Matti Nykter, Leena Latonen, Pekka Ruusuvuori, Mira Valkonen, Kimmo Kartasalo
Publikováno v:
ICCV Workshops
We present a dual convolutional neural network (dCNN) architecture for extracting multi-scale features from histological tissue images for the purpose of automated characterization of tissue in digital pathology. The dual structure consists of two id
Autor:
Mira, Valkonen, Kimmo, Kartasalo, Kaisa, Liimatainen, Matti, Nykter, Leena, Latonen, Pekka, Ruusuvuori
Publikováno v:
Cytometry. Part A : the journal of the International Society for Analytical Cytology. 91(6)
Digital pathology has led to a demand for automated detection of regions of interest, such as cancerous tissue, from scanned whole slide images. With accurate methods using image analysis and machine learning, significant speed-up, and savings in cos
Autor:
Kimmo Kartasalo, Leena Latonen, Masi Valkonen, Pekka Ruusuvuori, Matti Nykter, Tapio Visakorpi, Mira Valkonen
Publikováno v:
Cancer Research. 79:46-46
The integration of serial sectioning of tissue, digital whole slide imaging (WSI) and computational reconstruction algorithms enable the examination of histological samples in 3D at subcellular resolution. This allows visualizing and analyzing the im