Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Minsuk Yang"'
Autor:
Jiří Neustupa, Minsuk Yang
Publikováno v:
Fluids Under Control ISBN: 9783031276248
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::dacf1ae5644ef1f138ebc626e94cfe27
https://doi.org/10.1007/978-3-031-27625-5_6
https://doi.org/10.1007/978-3-031-27625-5_6
Publikováno v:
Nonlinear Analysis: Real World Applications. 73:103920
Publikováno v:
Applied Mathematics Letters. 143:108664
Publikováno v:
Journal of Mathematical Fluid Mechanics. 24
Publikováno v:
Mathematische Annalen. 377:617-642
We study local regularity properties of a weak solution $u$ to the Cauchy problem of the incompressible Navier-Stokes equations. We present a new regularity criterion for the weak solution $u$ satisfying the condition $L^\infty(0,T;L^{3,w}(\mathbb{R}
Publikováno v:
Applied Mathematics Letters. 132:108121
Autor:
Minsuk Yang, Hi Jun Choe
Publikováno v:
Mathematical Analysis in Fluid Mechanics. :65-84
We study the strong solution to the 3-D compressible Navier--Stokes equations. We propose a new blow up criterion for barotropic gases in terms of the integral norm of density $\rho$ and the divergence of the velocity $\bu$ without any restriction on
Autor:
Minsuk Yang, Jiří Neustupa
Publikováno v:
Journal of Mathematical Analysis and Applications. 502:125258
We assume that Ω is either the whole space R 3 or a half-space or a smooth bounded or exterior domain in R 3 , T > 0 and ( u , b , p ) is a suitable weak solution of the MHD equations in Ω × ( 0 , T ) . We show that ( x 0 , t 0 ) ∈ Ω × ( 0 , T
Autor:
Minsuk Yang, Jiří Neustupa
Publikováno v:
Nonlinear Analysis: Real World Applications. 60:103283
We consider the system of MHD equations in Ω × ( 0 , T ) , where Ω is a domain in R 3 and T > 0 , with the no slip boundary condition for the velocity u and the Navier-type boundary condition for the magnetic induction b . We show that an associat
Publikováno v:
Nonlinear Analysis. 163:163-176
We consider suitable weak solutions to the Navier–Stokes equations in time varying domains. We develop Schauder theory for the approximate Stokes equations in time varying domains whose solutions satisfy a uniform localized energy estimate includin