Zobrazeno 1 - 10
of 44
pro vyhledávání: '"Minlend, Ignace Aristide"'
Autor:
Minlend, Ignace Aristide, Wu, Jing
In this paper, we prove the existence of a family of non trivial compact subdomains $\O$ in the manifold $\mathcal{M}=\R^N\times \R/2\pi\Z$ for which the overdetermined Neumann boundary value problem \begin{align}\label{Neumann1} \left \{ \begin{alig
Externí odkaz:
http://arxiv.org/abs/2405.07063
Autor:
Minlend, Ignace Aristide
We prove the existence of nontrivial unbounded domains $\O$ in the Euclidean space $\R^d$ for which the Dirichlet eigenvalue problem for the Laplacian on $\Omega$ admits sign-changing eigenfunctions with constant Neumann values on $\partial \Omega$.
Externí odkaz:
http://arxiv.org/abs/2307.07784
We prove the existence of nontrivial unbounded exceptional domains in the Euclidean space $\R^N$, $N\geq4$. These domains arise as perturbations of complements of straight cylinders in $\R^N$, and by definition they support a positive harmonic functi
Externí odkaz:
http://arxiv.org/abs/2305.07802
We prove the existence of a family of compact subdomains $\Omega$ of the flat cylinder $\mathbb{R}^N\times \mathbb{R}/2\pi\mathbb{Z}$ for which the Neumann eigenvalue problem for the Laplacian on $\Omega$ admits eigenfunctions with constant Dirichlet
Externí odkaz:
http://arxiv.org/abs/2303.17036
We study the existence of nontrivial unbounded surfaces $S\subset \mathbb{R}^3$ with the property that the constant charge distribution on $S$ is an electrostatic equilibrium, i.e. the resulting electrostatic force is normal to the surface at each po
Externí odkaz:
http://arxiv.org/abs/2203.15713
Autor:
Minlend, Ignace Aristide
We study the existence of non-trivial unbounded domains of $\Omega \subset \mathbb{R}^2$ where the equation \begin{align} - \lambda u_{xx} -u_{tt} &= u \qquad \text{in $\Omega$,}\nonumber u &=0 \qquad \text{on $\partial \Omega$,}\nonumber \end{align}
Externí odkaz:
http://arxiv.org/abs/2203.15492
Autor:
Minlend, Ignace Aristide
We prove a general result characterizing a specific class of Serrin domains as supports of unbounded and periodic constant mean curvature graphs. We apply this result to prove the existence of a family of unbounded periodic constant mean curvature gr
Externí odkaz:
http://arxiv.org/abs/2101.02812
Autor:
Minlend, Ignace Aristide
We study overdetermined problems for fully nonlinear elliptic equations in subdomains $\O$ of the Euclidean sphere $\mathbb{S}^{N}$ and the hyperbolic space $\mathbb{H}^{N}$. We prove, the existence of a classical solution to the underlined equation
Externí odkaz:
http://arxiv.org/abs/2010.13945
We construct a foliation of an asymptotically flat end of a Riemannian manifold by hypersurfaces which are critical points of a natural functional arising in potential theory. These hypersurfaces are perturbations of large coordinate spheres, and the
Externí odkaz:
http://arxiv.org/abs/2007.05323
We study hypersurfaces with fractional mean curvature in N-dimensional Euclidean space. These hypersurfaces are critical points of the fractional perimeter under a volume constraint. We use local inversion arguments to prove existence of smooth branc
Externí odkaz:
http://arxiv.org/abs/1804.01782