Zobrazeno 1 - 10
of 11 048
pro vyhledávání: '"Minkowski Inequality"'
Autor:
Lv, Yusha1,2 (AUTHOR) yslv@qlu.edu.cn, Sawano, Yoshihiro (AUTHOR) yoshihiro-sawano@celery.ocn.ne.jp
Publikováno v:
Journal of Function Spaces. 10/24/2024, Vol. 2024, p1-6. 6p.
The first goal of this paper is to improve some of the results in \cite{BCPR}. Namely, we establish the $L_p$-Brunn-Minkwoski inequality for intrinsic volumes for origin-symmetric convex bodies that are close to the ball in the $C^2$ sense for a cert
Externí odkaz:
http://arxiv.org/abs/2411.17896
Autor:
Qin, Lei
In this paper, we investigate the log-concavity property of the first eigenfunction to the weighted $p$-Laplace operator in class of bounded, convex and smooth domain. Moreover, we prove a Brunn-Minkowski-type inequality for the first eigenvalue to t
Externí odkaz:
http://arxiv.org/abs/2411.16377
The Brunn-Minkowski inequality, applicable to bounded measurable sets $A$ and $B$ in $\mathbb{R}^d$, states that $|A+B|^{1/d} \geq |A|^{1/d}+|B|^{1/d}$. Equality is achieved if and only if $A$ and $B$ are convex and homothetic sets in $\mathbb{R}^d$.
Externí odkaz:
http://arxiv.org/abs/2407.10932
We prove that the first (nontrivial) Dirichlet eigenvalue of the Ornstein-Uhlenbeck operator $$ L(u)=\Delta u-\langle\nabla u,x\rangle\,, $$ as a function of the domain, is convex with respect to the Minkowski addition, and we characterize the equali
Externí odkaz:
http://arxiv.org/abs/2407.21354
We show that for all $A, B \subseteq \{0,1,2\}^{d}$ we have $$ |A+B|\geq (|A||B|)^{\log(5)/(2\log(3))}. $$ We also show that for all finite $A,B \subset \mathbb{Z}^{d}$, and any $V \subseteq\{0,1\}^{d}$ the inequality $$ |A+B+V|\geq |A|^{1/p}|B|^{1/q
Externí odkaz:
http://arxiv.org/abs/2404.04486
Autor:
Harvie, Brian, Wang, Ye-Kai
We prove that equality in the Minkowski inequality for asymptotically flat static manifolds is achieved only by slices of Schwarzschild space. To show this, we establish uniqueness of *quasi-spherical* static metrics: rotationally symmetric regions o
Externí odkaz:
http://arxiv.org/abs/2403.06216
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ping Zhang1 zhangping9978@126.com, Xiaohua Zhang2 zhangxiaohua07@163.com
Publikováno v:
Engineering Letters. Feb2024, Vol. 32 Issue 2, p220-225. 6p.