Zobrazeno 1 - 10
of 109
pro vyhledávání: '"Minimum norm estimate"'
Publikováno v:
Sensors, Vol 24, Iss 12, p 3968 (2024)
This work addresses the challenge of classifying multiclass visual EEG signals into 40 classes for brain–computer interface applications using deep learning architectures. The visual multiclass classification approach offers BCI applications a sign
Externí odkaz:
https://doaj.org/article/15a625719c6f4dd3893f3ef74d27c8d3
Autor:
Elisabetta Vallarino, Ana Sofia Hincapié, Karim Jerbi, Richard M. Leahy, Annalisa Pascarella, Alberto Sorrentino, Sara Sommariva
Publikováno v:
NeuroImage, Vol 281, Iss , Pp 120356- (2023)
The accurate characterization of cortical functional connectivity from Magnetoencephalography (MEG) data remains a challenging problem due to the subjective nature of the analysis, which requires several decisions at each step of the analysis pipelin
Externí odkaz:
https://doaj.org/article/e0a7618d05b749eda5c363152770e24b
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Lau M. Andersen
Publikováno v:
Frontiers in Neuroscience, Vol 12 (2018)
An important aim of an analysis pipeline for magnetoencephalographic data is that it allows for the researcher spending maximal effort on making the statistical comparisons that will answer the questions of the researcher, while in turn spending mini
Externí odkaz:
https://doaj.org/article/81bf244a71da4330b641b4ea163746c2
Publikováno v:
Frontiers in Neuroscience, Vol 8 (2014)
Modern neuroimaging techniques enable non-invasive observation of ongoing neural processing, with magnetoencephalography (MEG) in particular providing direct measurement of neural activity with millisecond time resolution. However, accurately mapping
Externí odkaz:
https://doaj.org/article/353bf355e80049e9a3e756165431f6c8
Publikováno v:
Frontiers in Human Neuroscience, Vol 8 (2014)
Magnetoencephalography (MEG), which acquires neuromagnetic fields in the brain, is a useful diagnostic tool in presurgical evaluation of epilepsy. Previous studies have shown that MEG affects the planning intracranial EEG placement and correlates wit
Externí odkaz:
https://doaj.org/article/98a9e76451874d5cbd5b7aa9c9ac1b8a
Publikováno v:
BRAIN CONNECTIVITY. 8(7):420-428
The combination of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) enables one to study effective connectivity and activation order in neuronal networks. To characterize effective connectivity originating from the primary mot
Autor:
Gian Luca Romani, Matti Stenroos, Lauri Parkkonen, Laura Marzetti, Vittorio Pizzella, Risto J. Ilmoniemi, Federico Chella
Publikováno v:
NeuroImage
openaire: EC/H2020/686865/EU//BREAKBEN Co-registration between structural head images and functional MEG data is needed for anatomically-informed MEG data analysis. Despite the efforts to minimize the co-registration error, conventional landmark- and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::36b98ab3ba0b9a6407fdbafb274f21f7
https://aaltodoc.aalto.fi/handle/123456789/38297
https://aaltodoc.aalto.fi/handle/123456789/38297
Autor:
Sébastien Daligault, Ana Sofía Hincapié, Karim Jerbi, Jérémie Mattout, Diego Cosmelli, Claude Delpuech, Domingo Mery, Jan Kujala, Annalisa Pascarella
Publikováno v:
NeuroImage (Orlando Fla., Print) 156 (2017): 29–42. doi:10.1016/j.neuroimage.2017.04.038
info:cnr-pdr/source/autori:Hincapié, Ana Sofía; Kujala, Jan; Mattout, Jérémie; Pascarella, Annalisa; Daligault, Sebastien; Delpuech, Claude;Mery, Domingo; Cosmelli, Diego; Jerbi, Karim;/titolo:The impact of MEG source reconstruction method on source-space connectivity estimation: A comparison between minimum-norm solution and beamforming/doi:10.1016%2Fj.neuroimage.2017.04.038/rivista:NeuroImage (Orlando Fla., Print)/anno:2017/pagina_da:29/pagina_a:42/intervallo_pagine:29–42/volume:156
BACI Conference, 2017, Bern, Switzerland, 29/08/2017-02/09/29017
info:cnr-pdr/source/autori:Ana Sofia Hincapie, Jan Kujala, Jérémie Mattout, Annalisa Pascarella, Sebastien Daligault, Claude Delpuech, Domingo Mery, Diego Cosmelli, Karim Jerbi/congresso_nome:BACI Conference, 2017/congresso_luogo:Bern, Switzerland/congresso_data:29%2F08%2F2017-02%2F09%2F29017/anno:2017/pagina_da:/pagina_a:/intervallo_pagine
info:cnr-pdr/source/autori:Hincapié, Ana Sofía; Kujala, Jan; Mattout, Jérémie; Pascarella, Annalisa; Daligault, Sebastien; Delpuech, Claude;Mery, Domingo; Cosmelli, Diego; Jerbi, Karim;/titolo:The impact of MEG source reconstruction method on source-space connectivity estimation: A comparison between minimum-norm solution and beamforming/doi:10.1016%2Fj.neuroimage.2017.04.038/rivista:NeuroImage (Orlando Fla., Print)/anno:2017/pagina_da:29/pagina_a:42/intervallo_pagine:29–42/volume:156
BACI Conference, 2017, Bern, Switzerland, 29/08/2017-02/09/29017
info:cnr-pdr/source/autori:Ana Sofia Hincapie, Jan Kujala, Jérémie Mattout, Annalisa Pascarella, Sebastien Daligault, Claude Delpuech, Domingo Mery, Diego Cosmelli, Karim Jerbi/congresso_nome:BACI Conference, 2017/congresso_luogo:Bern, Switzerland/congresso_data:29%2F08%2F2017-02%2F09%2F29017/anno:2017/pagina_da:/pagina_a:/intervallo_pagine
Despite numerous important contributions, the investigation of brain connectivity with magnetoencephalography (MEG) still faces multiple challenges. One critical aspect of source-level connectivity, largely overlooked in the literature, is the putati