Zobrazeno 1 - 10
of 23 979
pro vyhledávání: '"Minimal volume"'
Autor:
Iriyeh, Hiroshi, Shibata, Masataka
We give the sharp lower bound of the volume product of three dimensional convex bodies which are invariant under two kinds of discrete subgroups of $O(3)$ of order four. We also characterize the convex bodies with the minimal volume product in each c
Externí odkaz:
http://arxiv.org/abs/2409.16785
Publikováno v:
Australasian J. Combin. 90 (2024), 357--362
Let $\mathcal{P} \subset \mathbb{R}^d$ be a lattice polytope of dimension $d$. Let $b(\mathcal{P})$ denote the number of lattice points belonging to the boundary of $\mathcal{P}$ and $c(\mathcal{P})$ that to the interior of $\mathcal{P}$. It follows
Externí odkaz:
http://arxiv.org/abs/2409.12212
We consider the problem of learning uncertainty regions for parameter estimation problems. The regions are ellipsoids that minimize the average volumes subject to a prescribed coverage probability. As expected, under the assumption of jointly Gaussia
Externí odkaz:
http://arxiv.org/abs/2405.02441
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Liu, Jihao, Liu, Wenfei
We show that the minimal volume of surfaces of log general type, with non-empty non-klt locus on the ample model, is $\frac{1}{825}$. Furthermore, the ample model $V$ achieving the minimal volume is determined uniquely up to isomorphism. The canonica
Externí odkaz:
http://arxiv.org/abs/2308.14268
Autor:
Esser, Louis, Totaro, Burt
We construct log canonical pairs $(X,B)$ with $B$ a nonzero reduced divisor and $K_X+B$ ample that have the smallest known volume. We conjecture that our examples have the smallest volume in each dimension. The conjecture is true in dimension 2, by L
Externí odkaz:
http://arxiv.org/abs/2308.08034
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Zhang, Yue
The minimal volume of orientable hyperbolic manifolds with a given number of cusps has been found for $0,1,2,4$ cusps, while the minimal volume of 3-cusped orientable hyperbolic manifolds remains unknown. By using guts in sutured manifolds and pared
Externí odkaz:
http://arxiv.org/abs/2304.09950
Publikováno v:
Australasian J. Combin. 85 (2023), 159--163
Let $\mathcal{P} \subset \mathbb{R}^d$ be a lattice polytope of dimension $d$. Let $b$ denote the number of lattice points belonging to the boundary of $\mathcal{P}$ and $c$ that to the interior of $\mathcal{P}$. It follows from a lower bound theorem
Externí odkaz:
http://arxiv.org/abs/2301.09972
Autor:
Totaro, Burt
We construct klt projective varieties with ample canonical class and the smallest known volume. We also find exceptional klt Fano varieties with the smallest known anticanonical volume. We conjecture that our examples have the smallest volume in ever
Externí odkaz:
http://arxiv.org/abs/2210.11354