Zobrazeno 1 - 10
of 118
pro vyhledávání: '"Milousheva Velichka"'
Publikováno v:
C. R. Acad. Bulg. Sci., vol. 77, no. 2 (2024), pp. 167-178
In the present paper, we study timelike surfaces free of minimal points in the four-dimensional Minkowski space. For each such surface we introduce a geometrically determined pseudo-orthonormal frame field and writing the derivative formulas with res
Externí odkaz:
http://arxiv.org/abs/2403.06721
In this paper we give Weierstrass-type representation formulas for the null curves and for the minimal Lorentz surfaces in the Minkowski 3-space $\mathbb R^3_1$ using real-valued functions. Applying the Weierstrass-type representations for the null c
Externí odkaz:
http://arxiv.org/abs/2402.17850
Autor:
Kassabov, Ognian, Milousheva, Velichka
Publikováno v:
Serdica Math. J. 49 (2023), 301-316
We study minimal timelike surfaces in $\mathbb R^3_1$ using a special Weierstrass-type formula in terms of holomorphic functions defined in the algebra of the double (split-complex) numbers. We present a method of obtaining an equation of a minimal t
Externí odkaz:
http://arxiv.org/abs/2310.10129
Autor:
Ganchev Georgi, Milousheva Velichka
Publikováno v:
Open Mathematics, Vol 12, Iss 10, Pp 1586-1601 (2014)
Externí odkaz:
https://doaj.org/article/b1094f88c41d465b8cf34df2046d6c2b
Autor:
Ganchev Georgi, Milousheva Velichka
Publikováno v:
Open Mathematics, Vol 8, Iss 6, Pp 993-1008 (2010)
Externí odkaz:
https://doaj.org/article/099fe542bc154af683ba08e38530b35e
Publikováno v:
Filomat, Vol. 37, No 25 (2023)
In the present paper, we consider timelike general rotational surfaces in the Minkowski 4-space which are analogous to the general rotational surfaces in the Euclidean 4-space introduced by C. Moore. We study two types of such surfaces (with timelike
Externí odkaz:
http://arxiv.org/abs/2212.14603
We consider Lorentz surfaces in $\mathbb R^3_1$ satisfying the condition $H^2-K\neq 0$, where $K$ and $H$ are the Gauss curvature and the mean curvature, respectively, and call them Lorentz surfaces of general type. For this class of surfaces we intr
Externí odkaz:
http://arxiv.org/abs/2111.10599
A minimal Lorentz surface in $\mathbb R^4_2$ is said to be of general type if its corresponding null curves are non-degenerate. These surfaces admit canonical isothermal and canonical isotropic coordinates. It is known that the Gauss curvature $K$ an
Externí odkaz:
http://arxiv.org/abs/2108.00585
Autor:
Kassabov, Ognian, Milousheva, Velichka
Publikováno v:
Mediterr. J. Math. Volume 17, issue 6, 199 (2020)
The minimal Lorentzian surfaces in $\mathbb{R}^4_2$ whose first normal space is two-dimensional and whose Gauss curvature $K$ and normal curvature $\varkappa$ satisfy $K^2-\varkappa^2 >0$ are called minimal Lorentzian surfaces of general type. These
Externí odkaz:
http://arxiv.org/abs/2107.14609
Autor:
BENCHEVA, Victoria1 viktoriq.bencheva@gmail.com, MILOUSHEVA, Velichka1 vmil@math.bas.bg
Publikováno v:
Turkish Journal of Mathematics. 2024, Vol. 48 Issue 2, p327-345. 19p.