Zobrazeno 1 - 10
of 162
pro vyhledávání: '"Milman, Vitali"'
Autor:
König, Hermann, Milman, Vitali
We show rigidity results for the operator equations T(f.g) = Tf.Tg, T(f*g) = Tf.Tg and T(f.g) = Tf*Tg for bijective operators T acting on sufficently large spaces of smooth functions. Typically a condition like |T(f.g) - Tf.Tg| < a for all f, g with
Externí odkaz:
http://arxiv.org/abs/2412.14694
Autor:
Milman, Vitali, Rotem, Liran
Let $B_{x}\subseteq\mathbb{R}^{n}$ denote the Euclidean ball with diameter $[0,x]$, i.e. with with center at $\frac{x}{2}$ and radius $\frac{\left|x\right|}{2}$. We call such a ball a petal. A flower $F$ is any union of petals, i.e. $F=\bigcup_{x\in
Externí odkaz:
http://arxiv.org/abs/2005.11253
We study new classes of convex bodies and star bodies with unusual properties. First we define the class of reciprocal bodies, which may be viewed as convex bodies of the form "$1/K$". The map $K\mapsto K^\prime$ sending a body to its reciprocal is a
Externí odkaz:
http://arxiv.org/abs/1812.08709
Given an arbitrary $1$-Lipschitz function $f$ on the torus $\mathbb{T}^n $, we find a $k$-dimensional subtorus $M \subseteq \mathbb{T}^n$, parallel to the axes, such that the restriction of $f$ to the subtorus $M$ is nearly a constant function. The $
Externí odkaz:
http://arxiv.org/abs/1402.5589
Autor:
Milman, Vitali, Rotem, Liran
Publikováno v:
Electron. Res. Announc. Math. Sci. 20 (2013), 1-11
Mixed volumes, which are the polarization of volume with respect to the Minkowski addition, are fundamental objects in convexity. In this note we announce the construction of mixed integrals, which are functional analogs of mixed volumes. We build a
Externí odkaz:
http://arxiv.org/abs/1302.0823
Autor:
Milman, Vitali, Rotem, Liran
In this paper we define an addition operation on the class of quasi-concave functions. While the new operation is similar to the well-known sup-convolution, it has the property that it polarizes the Lebesgue integral. This allows us to define mixed i
Externí odkaz:
http://arxiv.org/abs/1210.4346