Zobrazeno 1 - 10
of 119
pro vyhledávání: '"Millot, Vincent"'
Autor:
Évrard, Sébastien
Publikováno v:
Revue historique de droit français et étranger (1922-), 2018 Jan 01. 96(1), 157-159.
Externí odkaz:
https://www.jstor.org/stable/26593600
This work is devoted to study the asymptotic behavior of critical points $\{(u_\varepsilon,v_\varepsilon)\}_{\varepsilon>0}$ of the Ambrosio-Tortorelli functional. Under a uniform energy bound assumption, the usual $\Gamma$-convergence theory ensures
Externí odkaz:
http://arxiv.org/abs/2210.03533
We study the behaviour of global minimizers of a continuum Landau-de Gennes energy functional for nematic liquid crystals, in three-dimensional axially symmetric domains domains diffeomorphic to a ball (a nematic droplet) and in a restricted class of
Externí odkaz:
http://arxiv.org/abs/2109.15178
Publikováno v:
In Journal of Functional Analysis 1 April 2024 286(7)
We study energy minimization of a continuum Landau-de Gennes energy functional for nematic liquid crystals, in three-dimensional axisymmetric domains and in a restricted class of $\mathbb{S}^1$-equivariant (i.e., axially symmetric) configurations. We
Externí odkaz:
http://arxiv.org/abs/2008.13676
We study global minimizers of a continuum Landau-De Gennes energy functional for nematic liquid crystals, in three-dimensional domains. Assuming smooth and uniaxial (e.g. homeotropic) boundary conditions and a corresponding physically relevant norm c
Externí odkaz:
http://arxiv.org/abs/1912.12160
This article addresses the regularity issue for stationary or minimizing fractional harmonic maps into spheres of order $s\in(0,1)$ in arbitrary dimensions. It is shown that such fractional harmonic maps are $C^\infty$ away from a small closed singul
Externí odkaz:
http://arxiv.org/abs/1909.11466
Autor:
Millot, Vincent, Pegon, Marc
In this article, we improve the partial regularity theory for minimizing $1/2$-harmonic maps in the case where the target manifold is the $(m-1)$-dimensional sphere. For $m\geq 3$, we show that minimizing $1/2$-harmonic maps are smooth in dimension 2
Externí odkaz:
http://arxiv.org/abs/1901.05790
We study a variational model which combines features of the Ginzburg-Landau model in 2D and of the Mumford-Shah functional. As in the classical Ginzburg-Landau theory, a prescribed number of point vortices appear in the small energy regime; the model
Externí odkaz:
http://arxiv.org/abs/1711.08668
This article addresses the regularity issue for minimizing fractional harmonic maps of order $s\in(0,1/2)$ from an interval into a smooth manifold. H\"older continuity away from a locally finite set is established for a general target. If the target
Externí odkaz:
http://arxiv.org/abs/1710.04754