Zobrazeno 1 - 10
of 2 361
pro vyhledávání: '"Miller,Craig"'
A monoid $S$ is said to be weakly right coherent if every finitely generated right ideal of $S$ is finitely presented as a right $S$-act. It is known that $S$ is weakly right coherent if and only if it satisfies the following conditions: $S$ is right
Externí odkaz:
http://arxiv.org/abs/2411.03947
The left and right diameters of a monoid are topological invariants defined in terms of suprema of lengths of derivation sequences with respect to finite generating sets for the universal left or right congruences. We compute these parameters for the
Externí odkaz:
http://arxiv.org/abs/2408.00416
Autor:
Brookes, Matthew, Miller, Craig
Given a semigroup $S$, for each Green's relation $\mathcal{K}\in\{\mathcal{L},\mathcal{R},\mathcal{J},\mathcal{H}\}$ on $S,$ the $\mathcal{K}$-height of $S,$ denoted by $H_{\mathcal{K}}(S),$ is the height of the poset of $\mathcal{K}$-classes of $S.$
Externí odkaz:
http://arxiv.org/abs/2402.05846
For a semigroup $S$ whose universal right congruence is finitely generated (or, equivalently, a semigroup satisfying the homological finiteness property of being type right-$FP_1$), the right diameter of $S$ is a parameter that expresses how `far apa
Externí odkaz:
http://arxiv.org/abs/2310.07655
Autor:
Miller, Craig
We call a semigroup $\mathcal{R}$-noetherian if it satisfies the ascending chain condition on principal right ideals, or, equivalently, the ascending chain condition on $\mathcal{R}$-classes. We investigate the behaviour of the property of being $\ma
Externí odkaz:
http://arxiv.org/abs/2302.01847
Autor:
Miller, Craig
We call a semigroup $S$ right noetherian if it satisfies the ascending chain condition on right ideals, and we say that $S$ satisfies ACCPR if it satisfies the ascending chain condition on principal right ideals. We investigate the behavior of these
Externí odkaz:
http://arxiv.org/abs/2209.13607
A semigroup $S$ is said to be right pseudo-finite if the universal right congruence can be generated by a finite set $U\subseteq S\times S$, and there is a bound on the length of derivations for an arbitrary pair $(s,t)\in S\times S$ as a consequence
Externí odkaz:
http://arxiv.org/abs/2204.10155
Autor:
Miller, Craig
The $\mathcal{R}$-height of a semigroup $S$ is the height of the poset of $\mathcal{R}$-classes of $S,$ i.e. the supremum of the lengths of chains of $\mathcal{R}$-classes. Given a semigroup $S$ with finite $\mathcal{R}$-height, we establish bounds o
Externí odkaz:
http://arxiv.org/abs/2204.03377