Zobrazeno 1 - 10
of 246
pro vyhledávání: '"Miller, Mirka"'
Publikováno v:
Discrete Applied Mathematics 319:424-438, 2022
We introduce a new graph-theoretic concept in the area of network monitoring. A set $M$ of vertices of a graph $G$ is a \emph{distance-edge-monitoring set} if for every edge $e$ of $G$, there is a vertex $x$ of $M$ and a vertex $y$ of $G$ such that $
Externí odkaz:
http://arxiv.org/abs/2011.00029
Publikováno v:
In Discrete Applied Mathematics 15 October 2022 319:424-438
Publikováno v:
Discrete Mathematics, Volume 339, Issue 8, Pages 2066--2069
The degree-diameter problem seeks to find the maximum possible order of a graph with a given (maximum) degree and diameter. It is known that graphs attaining the maximum possible value (the Moore bound) are extremely rare, but much activity is focuse
Externí odkaz:
http://arxiv.org/abs/1508.02596
For a vertex $v$ of a connected graph $G(V,E)$ and a subset $S$ of $V$, the distance between $v$ and $S$ is defined by $d(v,S)=min\{d(v,x):x \in S \}.$ For an ordered \emph{k}-partition $\Pi=\{S_1,S_2\ldots S_k\}$ of $V$, the representation of $v$ wi
Externí odkaz:
http://arxiv.org/abs/1507.05239
For a simple graph $G=(V,E)$ and for a pair of vertices $u,v \in V$, we say that a vertex $w \in V$ resolves $u$ and $v$ if the shortest path from $w$ to $u$ is of a different length than the shortest path from $w$ to $v$. A set of vertices ${R \subs
Externí odkaz:
http://arxiv.org/abs/1409.4510
Autor:
Bertault, François, Miller, Mirka, Pérez-Rosés, Hebert, Feria-Puron, Ramiro, Vaezpour, Elaheh
Publikováno v:
Proceedings of the VII Spanish Congress on Metaheuristics, and Evolutive and Bioinspired Algorithms (MAEB 2010). V.Campos, A.Duarte, M.Gallego, F.Cortazar, R.Marti (eds). Ibergarceta Publicaciones, S.L., Madrid. pp. 677--684
Graph labellings have been a very fruitful area of research in the last four decades. However, despite the staggering number of papers published in the field (over 1000), few general results are available, and most papers deal with particular classes
Externí odkaz:
http://arxiv.org/abs/1305.1880
The problem of finding the largest connected subgraph of a given undirected host graph, subject to constraints on the maximum degree $\Delta$ and the diameter $D$, was introduced in \cite{maxddbs}, as a generalization of the Degree-Diameter Problem.
Externí odkaz:
http://arxiv.org/abs/1203.4069
Publikováno v:
Discrete Mathematics 313 (2013), no. 4, 381-390
We consider the bipartite version of the {\it degree/diameter problem}, namely, given natural numbers $d\ge2$ and $D\ge2$, find the maximum number $\N^b(d,D)$ of vertices in a bipartite graph of maximum degree $d$ and diameter $D$. In this context, t
Externí odkaz:
http://arxiv.org/abs/1203.3588
Publikováno v:
Discrete Applied Mathematics 159 (2011), no. 13, 1331-1344
In this paper we consider the degree/diameter problem, namely, given natural numbers {\Delta} \geq 2 and D \geq 1, find the maximum number N({\Delta},D) of vertices in a graph of maximum degree {\Delta} and diameter D. In this context, the Moore boun
Externí odkaz:
http://arxiv.org/abs/1010.5658
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 37, Iss 3, Pp 745-754 (2017)
In this paper we obtain a sharp (improved) lower bound on the locating-total domination number of a graph, and show that the decision problem for the locating-total domination is NP-complete.
Externí odkaz:
https://doaj.org/article/e89aec8a8c9141fa9e27822be7372637