Zobrazeno 1 - 10
of 66
pro vyhledávání: '"Miller, Haynes"'
We set out the general theory of ``Beck modules'' in a variety of algebras and describe them as modules over suitable ``universal enveloping'' unital associative algebras. We develop a theory of ``noncommutative partial differentiation'' to pass from
Externí odkaz:
http://arxiv.org/abs/2309.07962
Publikováno v:
Semigroup Forum 108 (2024) 275--299
We observe that Beck modules for a commutative monoid are exactly modules over a graded commutative ring associated to the monoid. Under this identification, the Quillen cohomology of commutative monoids is a special case of Andr\'e-Quillen cohomolog
Externí odkaz:
http://arxiv.org/abs/2211.01536
Publikováno v:
Journal of Haitian Studies, 2022 Oct 01. 28(2), 33-95.
Externí odkaz:
https://www.jstor.org/stable/27233982
Autor:
Andrews, Michael, Miller, Haynes
We calculate the $\eta$-localization of the motivic stable homotopy ring over the complex numbers, confirming a conjecture of Guillou and Isaksen. Our approach is via the motivic Adams-Novikov spectral sequence. In fact, work of Hu, Kriz, and Ormsby
Externí odkaz:
http://arxiv.org/abs/1710.08018
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Haugseng, Rune, Miller, Haynes
Publikováno v:
Algebr. Geom. Topol. 16 (2016) 2911-2947
We study the mod-2 cohomology spectral sequence arising from delooping the Bousfield-Kan cosimplicial space giving the 2-nilpotent completion of a connective spectrum $X$. Under good conditions its $E_{2}$-term is computable as certain non-abelian de
Externí odkaz:
http://arxiv.org/abs/1302.1816
Autor:
Miller, Haynes
Several models for the Burnside bicategory of groupoids are described and shown to be equivalent. As observed by the late Gaunce Lewis, the corresponding Burnside category is additive.
Comment: 21 pp. This draft improves the paper following refe
Comment: 21 pp. This draft improves the paper following refe
Externí odkaz:
http://arxiv.org/abs/1208.2360
Autor:
Miller, Haynes
The question of when the Kervaire invariant is nontrivial was the only question left unresolved by Kervaire and Milnor in their 1963 study of the relationship between groups of homotopy spheres and stable homotopy groups. In 2009, Mike Hill, Mike Hop
Externí odkaz:
http://arxiv.org/abs/1104.4523
Autor:
Giambalvo, Vincent, Miller, Haynes
Publikováno v:
Algebr. Geom. Topol. 11 (2011) 2579-2585
The relations of Barratt and Miller are shown to include all relations among the elements $P^i\chi P^{n-i}$ in the mod $p$ Steenrod algebra, and a minimal set of relations is given.
Comment: 6 pages
Comment: 6 pages
Externí odkaz:
http://arxiv.org/abs/1104.3613