Zobrazeno 1 - 10
of 42
pro vyhledávání: '"Militaru, Gigel"'
Autor:
Agore, Ana-Loredana, Militaru, Gigel
Publikováno v:
SIGMA 10 (2014), 065, 16 pages
For a perfect Lie algebra $\mathfrak{h}$ we classify all Lie algebras containing $\mathfrak{h}$ as a subalgebra of codimension $1$. The automorphism groups of such Lie algebras are fully determined as subgroups of the semidirect product $\mathfrak{h}
Externí odkaz:
http://arxiv.org/abs/1312.4018
Autor:
Militaru, Gigel
Publikováno v:
Linear and Multilinear Algebra, 63 (2015), 601-621
Let $\mathfrak{L}$ be a Leibniz algebra, $E$ a vector space and $\pi : E \to \mathfrak{L}$ an epimorphism of vector spaces with $ \mathfrak{g} = {\rm Ker} (\pi)$. The global extension problem asks for the classification of all Leibniz algebra structu
Externí odkaz:
http://arxiv.org/abs/1308.5559
Publikováno v:
SIGMA 10 (2014), 049, 12 pages
Using the computational approach introduced in [Agore A.L., Bontea C.G., Militaru G., J. Algebra Appl. 12 (2013), 1250227, 24 pages, arXiv:1207.0411] we classify all coalgebra split extensions of $H_4$ by $k[C_n]$, where $C_n$ is the cyclic group of
Externí odkaz:
http://arxiv.org/abs/1210.7700
Autor:
Militaru, Gigel
Publikováno v:
Comm. in Algebra, Vol. 40(2012), 1766--1796
Let $R$, $S$ be two rings, $C$ an $R$-coring and ${}_{R}^C{\mathcal M}$ the category of left $C$-comodules. The category ${\bf Rep}\, ( {}_{R}^C{\mathcal M}, {}_{S}{\mathcal M} )$ of all representable functors ${}_{R}^C{\mathcal M} \to {}_{S}{\mathca
Externí odkaz:
http://arxiv.org/abs/1005.0156
A definition of a Doi-Koppinen datum over a noncommutative algebra is proposed. The idea is to replace a bialgebra in a standard Doi-Koppinen datum with a bialgebroid. The corresponding category of Doi-Koppinen modules over a noncommutative algebra i
Externí odkaz:
http://arxiv.org/abs/math/0101064
Autor:
Brzezinski, Tomasz, Militaru, Gigel
An equivalence between Lu's bialgebroids, Xu's bialgebroids with an anchor and Takeuchi's $\times_{A}$-bialgebras is explicitly proven. A new class of examples of bialgebroids is constructed. A (formal) dual of a bialgebroid, termed bicoalgebroid, is
Externí odkaz:
http://arxiv.org/abs/math/0012164
Autor:
Militaru, Gigel
Publikováno v:
Comm. in Algebra, 27(1999), 2393-2407
This paper studied what shall be called the Long equation: that is the system of nonlinear equation $R^{12}R^{13}=R^{13}R^{12}$ and $R^{12}R^{23}= R^{23}R^{12}$. Any solution of this system supplies us a solution for the integrability solution of Kni
Externí odkaz:
http://arxiv.org/abs/math/9807028
Autor:
Militaru, Gigel
Publikováno v:
Algebras and Representation Theory, 2(1999), 177-200
We study the Long dimodule category in conection with a nonlinear equation; we called the D-equation. The category of Long dimodules will play for the D-equation the same role as the category of Yetter-Drinfel'd (crossed) modules play for the quantum
Externí odkaz:
http://arxiv.org/abs/math/9807017
Autor:
Militaru, Gigel
Publikováno v:
Comm. in Algebra, 26(1998), 3071-3097
We study the Hopf equation which is equivalent to the pentagonal equation, from operator algebras. A FRT type theorem is given and new types of quantum groups are constructed. The key role is played now by the classical Hopf modules category. As an a
Externí odkaz:
http://arxiv.org/abs/math/9807003
Autor:
Militaru, Gigel
Publikováno v:
Comm. in Algebra, 26(1998), 3099-3117
New types of bialgebras arising from the Hopf equation (pentagonal equation) are introduced and studied. They will play from the Hopf equation the same role as the co-quasitriangular do from the quantum Yang Baxter equation.
Comment: Latex2e, Co
Comment: Latex2e, Co
Externí odkaz:
http://arxiv.org/abs/math/9807004