Zobrazeno 1 - 10
of 64
pro vyhledávání: '"Milies, César Polcino"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Assuena, Samir, Milies, César Polcino
We give a simple construction of codes from left ideals in group algebras of certain dihedral groups and give an example to show that they can produce codes with weights equal to those of the best known codes of the same length.
Externí odkaz:
http://arxiv.org/abs/1506.03303
We consider binary abelian codes of length $p^m q^n$, where $p$ and $q$ are prime rational integers under some restrictive hypotheses. In this case, we determine the idempotents generating minimal codes and either the respective weights or bounds of
Externí odkaz:
http://arxiv.org/abs/1205.5699
In 1995, E. Jespers, G. Leal and C. Polcino Milies classified all finite ring alternative loops (RA loops for short) which are not direct products of proper subloops. In this paper we extend this result to finitely generated RA loops and provide an e
Externí odkaz:
http://arxiv.org/abs/1204.4277
Publikováno v:
Communications in algebra, v. 42, p. 378-388, 2014
Finite groups $G$ such that $G/Z(G) \simeq C_2 \times C_2$ where $C_2$ denotes a cyclic group of order 2 and $Z(G)$ is the center of $G$ were studied in \cite{casofinito} and were used to classify finite loops with alternative loop algebras. In this
Externí odkaz:
http://arxiv.org/abs/1204.4271
Let G be a finite abelian group and F a field such that char(F) does not divide |G|. Denote by FG the group algebra of G over F. A (semisimple) abelian code is an ideal of FG. Two codes I and J of FG are G-equivalent if there exists an automorphism o
Externí odkaz:
http://arxiv.org/abs/1203.5742
Let $G$ be a group with involution * and $\sigma\colon G\to\{\pm1\}$ a group homomorphism. The map $\sharp$ that sends $\alpha=\sum\alpha_gg$ in a group ring $RG$ to $\alpha^{\sharp}=\sum\sigma(g)\alpha_gg^*$ is an involution of $RG$ called an \emph{
Externí odkaz:
http://arxiv.org/abs/1108.4648
We determine the structure of the semisimple group algebra of certain groups over the rationals and over those finite fields where the Wedderburn decompositions have the least number of simple components. We apply our work to obtain similar informati
Externí odkaz:
http://arxiv.org/abs/0907.1592
Publikováno v:
Proceedings of the American Mathematical Society, 1996 Apr 01. 124(4), 995-1002.
Externí odkaz:
https://www.jstor.org/stable/2161740