Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Milica Todorovic"'
Autor:
Marija Dokmanovic, Milan Z. Baltic, Jelena Duric, Jelena Ivanovic, Ljuba Popovic, Milica Todorovic, Radmila Markovic, Srdan Pantic
Publikováno v:
Asian-Australasian Journal of Animal Sciences, Vol 28, Iss 3, Pp 435-441 (2015)
Relationships among different stress parameters (lairage time and blood level of lactate and cortisol), meat quality parameters (initial and ultimate pH value, temperature, drip loss, sensory and instrumental colour, marbling) and carcass quality par
Externí odkaz:
https://doaj.org/article/9c7f84caf1994e24a7a2fdbe8ac06f08
Publikováno v:
ACS Omega, Vol 9, Iss 32, Pp 34684-34691 (2024)
Externí odkaz:
https://doaj.org/article/8681c3a6740042fa837acd8e9af85faf
Autor:
Jingrui Li, Fang Pan, Guo‐Xu Zhang, Zenghui Liu, Hua Dong, Dawei Wang, Zhuangde Jiang, Wei Ren, Zuo‐Guang Ye, Milica Todorović, Patrick Rinke
Publikováno v:
Small Structures, Vol 5, Iss 11, Pp n/a-n/a (2024)
Structural disorder is common in metal‐halide perovskites and important for understanding the functional properties of these materials. First‐principles methods can address structure variation on the atomistic scale, but they are often limited by
Externí odkaz:
https://doaj.org/article/b53711afebd54fa0b8d64df19cc31ba2
Autor:
Milica Todorovic, Danica Djurkin
Publikováno v:
Zbornik Matice srpske za drustvene nauke. :673-685
For understanding the demographic, economic and social development of the researched area, studying the distribution and concentration of population has a great importance. Spatial concentration of population of Serbia is a result of the rapid econom
Publikováno v:
Scientific Data, Vol 10, Iss 1, Pp 1-11 (2023)
Abstract Low-volatile organic compounds (LVOCs) drive key atmospheric processes, such as new particle formation (NPF) and growth. Machine learning tools can accelerate studies of these phenomena, but extensive and versatile LVOC datasets relevant for
Externí odkaz:
https://doaj.org/article/d6ef769c765b4c4896d80d09fca99824
Publikováno v:
npj Computational Materials, Vol 8, Iss 1, Pp 1-11 (2022)
Abstract We employ machine learning to derive tight-binding parametrizations for the electronic structure of defects. We test several machine learning methods that map the atomic and electronic structure of a defect onto a sparse tight-binding parame
Externí odkaz:
https://doaj.org/article/35c8268bcc314ef1ab63e41ba83cb8ee
Publikováno v:
Hemijska industrija
Hemijska Industrija, Vol 58, Iss 1, Pp 1-5 (2004)
Hemijska Industrija, Vol 58, Iss 1, Pp 1-5 (2004)
In this work mathematical models for the exergy and relative enthalpy of the water solution of sodium-chloride and the pure crystalline sodium-chloride where derived. The environment was defined with the temperature 20 °C, pressure 101,325 kPa and w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eda199bf9f150a1cb1bc1d16a1bd6c28
http://TechnoRep.tmf.bg.ac.rs/bitstream/id/8346/0367-598X0401001N.pdf
http://TechnoRep.tmf.bg.ac.rs/bitstream/id/8346/0367-598X0401001N.pdf
Publikováno v:
Beilstein Journal of Nanotechnology, Vol 11, Iss 1, Pp 1577-1589 (2020)
Identifying the atomic structure of organic–inorganic interfaces is challenging with current research tools. Interpreting the structure of complex molecular adsorbates from microscopy images can be difficult, and using atomistic simulations to find
Externí odkaz:
https://doaj.org/article/7de4fe929b6a423d918e7621ea859413
Publikováno v:
New Journal of Physics, Vol 25, Iss 11, p 113046 (2023)
We have studied the possibility of utilizing artificial intelligence (AI) models to optimize high-temperature superconducting (HTS) multilayer structures for applications working in a specific field and temperature range. For this, we propose a new v
Externí odkaz:
https://doaj.org/article/714ebad3725942f4b41177551309c2e7
Autor:
Alexander T. Egger, Lukas Hörmann, Andreas Jeindl, Michael Scherbela, Veronika Obersteiner, Milica Todorović, Patrick Rinke, Oliver T. Hofmann
Publikováno v:
Advanced Science, Vol 7, Iss 15, Pp n/a-n/a (2020)
Abstract Density functional theory calculations are combined with machine learning to investigate the coverage‐dependent charge transfer at the tetracyanoethylene/Cu(111) hybrid organic/inorganic interface. The study finds two different monolayer p
Externí odkaz:
https://doaj.org/article/dd8eef7680cd4191b8d2262ccdf97cd1