Zobrazeno 1 - 10
of 52
pro vyhledávání: '"Milewski, Jan"'
Autor:
Krasoń, Piotr, Milewski, Jan
In this paper we develop an algorithm for obtaining some new linear relations among the Lauricella $F_D$ functions. Relations we obtain, generalize those hinted in the work of B. C. Carlson. The coefficients of these relations are contained in the ri
Externí odkaz:
http://arxiv.org/abs/2009.07467
Autor:
Krasoń, Piotr, Milewski, Jan
In this paper we compute in some new cases the cardinalities of the fibers of certain natural fibrations that appear in the analysis of the configuration space of the Heisenberg ring. This is done by means of certain cyclic group actions on some subs
Externí odkaz:
http://arxiv.org/abs/1905.11815
Autor:
Krasoń, Piotr, Milewski, Jan
We consider an eigenvalue problem for an inverted one dimensional harmonic oscillator. We find a complete description for the eigenproblem in $C^{\infty}(\mathbb R)$. The eigenfunctions are described in terms of the confluent hypergeometric functions
Externí odkaz:
http://arxiv.org/abs/1905.10641
Autor:
Krason, Piotr, Milewski, Jan
In this paper we treat certain elliptic and hyper-elliptic integrals in a unified way. We introduce a new basis of these integrals coming from certain basis ${\phi}_n(x)$ of polynomials and show that the transition matrix between this basis and the t
Externí odkaz:
http://arxiv.org/abs/1905.09666
Autor:
Jakubczyk, Paweł, Wal, Andrzej, Kaczor, Michał, Jakubczyk, Dorota, Łabuz, Mirosław, Milewski, Jan
Publikováno v:
In Computer Physics Communications April 2021 261
Publikováno v:
Open Systems & Information Dynamics, Vol. 19, No. 2, 1250012, 2012
We analyse the exact solution of the eigenproblem for the Heisenberg Hamiltonian of magnetic heptagon, i.e. the ring of N=7 nodes, each with spin 1/2, within the XXX model with nearest neighbour interactions, from the point of view of finite extensio
Externí odkaz:
http://arxiv.org/abs/1406.5330
Publikováno v:
Physica B 434, 14-20, 2014
The exact Bethe eigenfunctions for the heptagonal ring within the isotropic XXX model exhibit a doubly degenerated energy level in the three-deviation sector at the centre of the Brillouin zone. We demonstrate an explicit construction of these eigenf
Externí odkaz:
http://arxiv.org/abs/1406.4912
Autor:
Banaszak, Grzegorz, Milewski, Jan
A $\sigma$-operator on a complexification $V_{\C}$ of an $\R$-vector space $V_{\R}$ is an operator $A \in \rm{End}_{\C} (V_{\C})$ such that $\sigma (A) = 0$ where $\sigma (z)$ denotes the Weierstrass $\sigma$-function. In this paper we define the not
Externí odkaz:
http://arxiv.org/abs/1211.0687
Autor:
Banaszak, Grzegorz, Milewski, Jan
In this paper we introduce new definition of Hodge structures and show that $\R$-Hodge structures are determined by $\R$-linear operators that are annihilated by the Weierstrass $\sigma$-function
Comment: 4 pages
Comment: 4 pages
Externí odkaz:
http://arxiv.org/abs/1209.0806
Autor:
Banaszak, Grzegorz, Milewski, Jan
Publikováno v:
In Comptes rendus - Mathématique July 2013 351(13-14):551-555