Zobrazeno 1 - 10
of 35
pro vyhledávání: '"Milena Dimova"'
Autor:
Mariana Petkova, Milena Dimova
Publikováno v:
Applied Microbiology, Vol 4, Iss 3, Pp 1283-1293 (2024)
Sclerotinia minor (S. minor) Jagger is a phytopathogenic fungus that causes lettuce drop, a serious problem in lettuce (Lactuca sativa L.) production. The control of this pathogen is challenging because of the resistance of sclerotia, which can survi
Externí odkaz:
https://doaj.org/article/d61f46db09a946fd9466563a657d5a01
Publikováno v:
Axioms, Vol 13, Iss 10, p 709 (2024)
In this paper, we study the initial boundary value problem for wave equations with combined logarithmic and power-type nonlinearities. For arbitrary initial energy, we prove a necessary and sufficient condition for blow up at infinity of the global w
Externí odkaz:
https://doaj.org/article/f494706a7a174f04ab7717f0fbf89d80
Autor:
Mariana Petkova, Velitchka Gotcheva, Milena Dimova, Elena Bartkiene, João Miguel Rocha, Angel Angelov
Publikováno v:
Microorganisms, Vol 10, Iss 11, p 2094 (2022)
Grapes (Vitis vinifera L.) are an essential crop for fresh consumption and wine production. Vineyards are attacked by several economically important bacterial and fungal diseases that require regular pesticide treatment. Among them, Pseudomonas syrin
Externí odkaz:
https://doaj.org/article/d5dbd94ef0294aa698674d9142fa6b37
Publikováno v:
Electronic Journal of Differential Equations, Vol 2018, Iss 68,, Pp 1-16 (2018)
We study a new class of ordinary differential equations with blow up solutions. Necessary and sufficient conditions for finite blow up time are proved. Based on the new differential equation, a revised version of the concavity method of Levine is
Externí odkaz:
https://doaj.org/article/18dfa2d293c1496f9b7baf832bed38b1
Publikováno v:
Mathematics, Vol 9, Iss 12, p 1398 (2021)
We consider the orbital stability of solitary waves to the double dispersion equation utt−uxx+h1uxxxx−h2uttxx+f(u)xx=0,h1>0,h2>0 with combined power-type nonlinearity f(u)=a|u|pu+b|u|2pu,p>0,a∈R,b∈R,b≠0. The stability of solitary waves with
Externí odkaz:
https://doaj.org/article/de087c7b4d4e4d7499fcb060df24c0ba
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9783031214837
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7ef75da1898cbf63ff4a75609706a394
https://doi.org/10.1007/978-3-031-21484-4_8
https://doi.org/10.1007/978-3-031-21484-4_8
Autor:
Mariana, Petkova, Velitchka, Gotcheva, Milena, Dimova, Elena, Bartkiene, João Miguel, Rocha, Angel, Angelov
Publikováno v:
Microorganisms. 10(11)
Grapes (
Publikováno v:
EIGHTH INTERNATIONAL CONFERENCE NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES (NTADES2021).
Publikováno v:
Advanced Computing in Industrial Mathematics ISBN: 9783030716158
Finite time blow up of the solutions to double dispersive equations with linear restoring force and supercritical initial energy is proved without any sign conditions on the scalar product \(\left\langle u_0,u_1\right\rangle \) of the initial data \(
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9b92513652a4f2a711860bada4d649ff
https://doi.org/10.1007/978-3-030-71616-5_21
https://doi.org/10.1007/978-3-030-71616-5_21
Publikováno v:
Mathematics and Computers in Simulation. 133:249-264
The solitary waves to the double dispersion equation with quadratic-cubic nonlinearity are explicitly constructed. Grillakis, Shatah and Strauss’ stability theory is applied for the investigation of the orbital stability or instability of solitary