Zobrazeno 1 - 10
of 124
pro vyhledávání: '"Milatovic, Ognjen"'
Autor:
Milatovic, Ognjen
Let $M$ be a complete Riemannian manifold satisfying a weighted Poincar\'e inequality, and let $\mathcal{E}$ be a Hermitian vector bundle over $M$ equipped with a metric covariant derivative $\nabla$. We consider the operator $H_{X,V}=\nabla^{\dagger
Externí odkaz:
http://arxiv.org/abs/2405.00926
Autor:
Milatovic, Ognjen
In analogy with the definition of ``extended Sobolev scale" on $\mathbb{R}^n$ by Mikhailets and Murach, working in the setting of the lattice $\mathbb{Z}^n$, we define the ``extended Sobolev scale" $H^{\varphi}(\mathbb{Z}^n)$, where $\varphi$ is a fu
Externí odkaz:
http://arxiv.org/abs/2310.10894
Autor:
Milatovic, Ognjen
In the setting of the lattice $\mathbb{Z}^n$ we consider a pseudo-differential operator $A$ whose symbol belongs to a class defined on $\mathbb{Z}^n\times \mathbb{T}^n$, where $\mathbb{T}^n$ is the $n$-torus. We realize $A$ as an operator acting betw
Externí odkaz:
http://arxiv.org/abs/2208.11216
Autor:
Milatovic, Ognjen
Publikováno v:
In Differential Geometry and its Applications December 2024 97
Let $\mathcal{E}$ be a Hermitian vector bundle over a Riemannian manifold $M$ with metric $g$, let $\nabla$ be a metric covariant derivative on $\mathcal{E}$. We study the generalized Ornstein-Uhlenbeck differential expression $P^{\nabla}=\nabla^{\da
Externí odkaz:
http://arxiv.org/abs/2107.03301
Autor:
Milatovic, Ognjen
In the context of a geodesically complete Riemannian manifold $M$, we study the self-adjointness of $\nabla^{\dagger}\nabla+V$ where $\nabla$ is a metric covariant derivative (with formal adjoint $\nabla^{\dagger}$) on a Hermitian vector bundle $\mat
Externí odkaz:
http://arxiv.org/abs/2104.07002
We give sufficient conditions for the essential self-adjointness of perturbed biharmonic operators acting on sections of a Hermitian vector bundle over a Riemannian manifold with additional assumptions, such as lower semi-bounded Ricci curvature or b
Externí odkaz:
http://arxiv.org/abs/2003.07697
Autor:
Milatovic, Ognjen
We give a sufficient condition for the essential self-adjointness of a perturbation of the square of the magnetic Laplacian on an infinite weighted graph. The main result is applicable to graphs whose degree function is not necessarily bounded. The r
Externí odkaz:
http://arxiv.org/abs/1904.02224
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We consider a differential expression $L^{\nabla}_{V}=\nabla^{\dagger}\nabla+V$, where $\nabla$ is a metric covariant derivative on a Hermitian bundle $E$ over a geodesically complete Riemannian manifold $(M,g)$ with metric $g$, and $V$ is a linear s
Externí odkaz:
http://arxiv.org/abs/1805.06527