Zobrazeno 1 - 10
of 80
pro vyhledávání: '"Milanov, Todor"'
We give a reformulation of the Dubrovin conjecture about the semisimplicity of quantum cohomology in terms of the so-called second structure connection of quantum cohomology. The key ingredient in our work is the notion of a twisted reflection vector
Externí odkaz:
http://arxiv.org/abs/2410.09709
Autor:
Milanov, Todor
We found an interesting application of the K-theoretic Heisenberg algebras of Weiqiang Wang to the foundations of permutation equivariant K-theoretic Gromov--Witten theory. We also found an explicit formula for the genus 0 correlators in the permutat
Externí odkaz:
http://arxiv.org/abs/2403.14964
Autor:
Milanov, Todor, Xia, Xiaokun
Publikováno v:
SIGMA 20 (2024), 029, 60 pages
Let $X$ be a smooth projective variety with a semisimple quantum cohomology. It is known that the blowup $\operatorname{Bl}_{\rm pt}(X)$ of $X$ at one point also has semisimple quantum cohomology. In particular, the monodromy group of the quantum coh
Externí odkaz:
http://arxiv.org/abs/2304.04365
Autor:
Milanov, Todor, Roquefeuil, Alexis
Publikováno v:
Adv. in Math., vol. 409, Part B(2022)
For a smooth projective variety whose anti-canonical bundle is nef, we prove confluence of the small $K$-theoretic $J$-function, i.e., after rescaling appropriately the Novikov variables, the small $K$-theoretic $J$-function has a limit when $q\to 1$
Externí odkaz:
http://arxiv.org/abs/2108.08620
Autor:
Alexandrov, Alexander, Milanov, Todor
Publikováno v:
Lett Math Phys 111, 88 (2021)
We construct a Hermitian matrix model for the total descendant potential of a simple singularity of type D similar to the Kontsevich matrix model for the generating function of intersection numbers on the Deligne--Mumford moduli spaces $\overline{\ma
Externí odkaz:
http://arxiv.org/abs/2011.00837
Autor:
Milanov, Todor, Zha, Chenghan
Publikováno v:
SIGMA 16 (2020), 081, 28 pages
We compute the image of the Milnor lattice of an ADE singularity under a period map. We also prove that the Milnor latticecan be identified with an appropriate relative $K$-group defined through the Berglund-H\"ubsch dual of the corresponding singula
Externí odkaz:
http://arxiv.org/abs/2003.12820
Autor:
Cheng, Jipeng, Milanov, Todor
Publikováno v:
Advances in Mathematics 388 (2021) 107860
Fano orbifold lines are classified by the Dynkin diagrams of type $A,D,$ and $E$. It is known that the corresponding total descendant potential is a tau-function of an appropriate Kac--Wakimoto hierarchy. It is also known that in the A-case the Kac--
Externí odkaz:
http://arxiv.org/abs/1910.03150
Autor:
Cheng, Jipeng, Milanov, Todor
In a companion paper to this one, we proved that the Gromov--Witten theory of a Fano orbifold line of type $D$ is governed by a system of Hirota Bilinear Equations. The goal of this paper is to prove that every solution to the Hirota Bilinear Equatio
Externí odkaz:
http://arxiv.org/abs/1909.12735
Autor:
Cheng, Jipeng, Milanov, Todor
It was proved in 2010 that the principal Kac--Wakimoto hierarchy of type $D$ is a reduction of the 2-component BKP hierarchy. On the other hand, it is known that the total descendant potential of a singularity of type $D$ is a tau-function of the pri
Externí odkaz:
http://arxiv.org/abs/1804.07417
Autor:
Milanov, Todor, Roquefeuil, Alexis
Publikováno v:
In Advances in Mathematics 19 November 2022 409 Part B