Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Milan Tvrdy"'
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2020, Iss 91, Pp 1-17 (2020)
This paper deals with impulsive problems consisting of second order differential equation with impulsive effects depending implicitly on the solution and with rather general nonlocal boundary conditions. The arguments are based on the lower and upper
Externí odkaz:
https://doaj.org/article/5b52363590a7489d8dd71bd6ef6d862e
Autor:
Irena Rachůnková, Milan Tvrdy
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2003, Iss 19, Pp 1-8 (2004)
We present conditions ensuring the existence of piecewise linear lower and upper functions for the nonlinear impulsive periodic boundary value problem $u''=f(t,u,u'),$ $u(t_i+)=\mathrm{J}_i(u(t_i)),$ $u'(t_i+)=\mathrm{M}_i(u'(t_i)),$ $i=1,2,\dots,m,$
Externí odkaz:
https://doaj.org/article/6e7d7a5213a649a2b303c653d38f1f0b
The book is primarily devoted to the Kurzweil-Stieltjes integral and its applications in functional analysis, theory of distributions, generalized elementary functions, as well as various kinds of generalized differential equations, including dynamic
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 72:3436-3446
It is known that the antimaximum principle holds for the quasilinear periodic problem (|u 0 | p 2 u 0 ) 0 + µ(t)(|u| p 2 u) = h(t), u(0) = u(T), u 0 (0) = u 0 (T), if µ 0 in (0,T) and
Autor:
Irena Rachunkova, Milan Tvrdy
Publikováno v:
Nonlinear Analysis. 59:133-146
This paper provides existence results for the nonlinear impulsive periodic boundary value problem u ″ = f ( t , u , u ′ ) , u ( t i + ) = J i ( u ( t i ) ) , u ′ ( t i + ) = M i ( u ′ ( t i ) ) , i = 1 , 2 , … , m , u ( 0 ) = u ( T ) , u
Autor:
Milan Tvrdy
Publikováno v:
Conferência Brasileira de Dinâmica, Controle e Aplicações.
Autor:
Umi Mahnuna Hanung, Milan Tvrdý
Publikováno v:
Mathematica Bohemica, Vol 144, Iss 4, Pp 357-372 (2019)
In this paper we explain the relationship between Stieltjes type integrals of Young, Dushnik and Kurzweil for functions with values in Banach spaces. To this aim also several new convergence theorems will be stated and proved.
Externí odkaz:
https://doaj.org/article/bc68d9f8e28948c6a658f6756c4a9666
Publikováno v:
Mathematica Bohemica, Vol 144, Iss 4, Pp 337-338 (2019)
Externí odkaz:
https://doaj.org/article/0b492a7c06a14d72a219d727f23bc4f0
Publikováno v:
Mathematica Bohemica, Vol 141, Iss 2, Pp 115-128 (2016)
Externí odkaz:
https://doaj.org/article/785d618dc4ed431295c6335ad0f6b1e6