Zobrazeno 1 - 10
of 57
pro vyhledávání: '"Milan Tvrdý"'
Autor:
Umi Mahnuna Hanung, Milan Tvrdý
Publikováno v:
Mathematica Bohemica, Vol 144, Iss 4, Pp 357-372 (2019)
In this paper we explain the relationship between Stieltjes type integrals of Young, Dushnik and Kurzweil for functions with values in Banach spaces. To this aim also several new convergence theorems will be stated and proved.
Externí odkaz:
https://doaj.org/article/bc68d9f8e28948c6a658f6756c4a9666
Publikováno v:
Mathematica Bohemica, Vol 144, Iss 4, Pp 337-338 (2019)
Externí odkaz:
https://doaj.org/article/0b492a7c06a14d72a219d727f23bc4f0
Publikováno v:
Mathematica Bohemica, Vol 141, Iss 2, Pp 115-128 (2016)
Externí odkaz:
https://doaj.org/article/785d618dc4ed431295c6335ad0f6b1e6
Publikováno v:
Journal of Mathematical Analysis and Applications. 519:126789
The book is primarily devoted to the Kurzweil-Stieltjes integral and its applications in functional analysis, theory of distributions, generalized elementary functions, as well as various kinds of generalized differential equations, including dynamic
Publikováno v:
Mathematica Bohemica, Vol 141, Iss 2, Pp 115-128 (2016)
Autor:
Umi Mahnuna Hanung, Milan Tvrdý
Publikováno v:
Mathematica Bohemica, Vol 144, Iss 4, Pp 357-372 (2019)
Integral equations of the form $$ x(t)=x(t_0)+\int_{t_0}^t d[A]\,x=f(t)-f(t_0)$$ are natural generalizations of systems of linear differential equations. Their main goal is that they admit solutions which need not be absolutely continuous. Up to now
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::18feab37c77b341195904885f101b3ec
http://arxiv.org/abs/1806.07954
http://arxiv.org/abs/1806.07954
Publikováno v:
Monatshefte für Mathematik. 180:409-434
In the theories of Lebesgue integration and of ordinary differential equations, the Lebesgue Dominated Convergence Theorem provides one of the most widely used tools. Available analogy in the Riemann or Riemann–Stieltjes integration is the Bounded
Autor:
Milan Tvrdý, Giselle Antunes Monteiro
Publikováno v:
Discrete & Continuous Dynamical Systems - A. 33:283-303
This paper deals with integral equations of the form \begin{eqnarray*} x(t)=\tilde{x}+∫_a^td[A]x+f(t)-f(a), t∈[a,b], \end{eqnarray*} in a Banach space $X,$ where $-\infty\ < a < b < \infty$, $\tilde{x}∈ X,$ $f:[a,b]→X$ is regulated on [a,b] a
We prove new results regarding the existence of positive solutions for a nonlinear periodic boundary value problem related to the Liebau phenomenon. As a consequence we obtain new sufficient conditions for the existence of a pump in a simple model. O
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c0980ed153d5620ff550d8095e18b364
http://arxiv.org/abs/1606.03602
http://arxiv.org/abs/1606.03602