Zobrazeno 1 - 10
of 43
pro vyhledávání: '"Milakis, E."'
Autor:
Andronicou, S., Milakis, E.
In this paper we prove existence and uniqueness of viscosity solutions of elliptic systems associated to fully nonlinear operators for minimization problems that involve interconnected obstacles. This system appears, among other, in the theory of the
Externí odkaz:
http://arxiv.org/abs/2301.07795
In the present paper we study the solvability of the Dirichlet problem for second order divergence form elliptic operators with bounded measurable coefficients which are small perturbations of given operators in rough domains beyond the Lipschitz cat
Externí odkaz:
http://arxiv.org/abs/1101.0331
Autor:
Milakis, E., Toro, T.
We study the boundary regularity of solutions of elliptic operators in divergence form with $C^{0,\alpha}$ coefficients or operators which are small perturbations of the Laplacian in non-smooth domains. We show that, as in the case of the Laplacian,
Externí odkaz:
http://arxiv.org/abs/0804.1242
Autor:
Labourie, C.1 (AUTHOR), Milakis, E.1 (AUTHOR) emilakis@ucy.ac.cy
Publikováno v:
ESAIM: Control, Optimisation & Calculus of Variations. 2022, Vol. 28, p1-39. 39p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Annales Academiae Scientiarum Fennicae Mathematica
Ann.Acad.Sci.Fenn.Math.
Annales Academiae scientiarum Fennicae. Mathematica (Pain.) 39 (2014): 51–71. doi:10.5186/aasfm.2014.3907
info:cnr-pdr/source/autori:A. Lemenant, E. Milakis, and L. V. Spinolo/titolo:On the extension property of Reifenberg-flat domains/doi:10.5186%2Faasfm.2014.3907/rivista:Annales Academiae scientiarum Fennicae. Mathematica (Pain.)/anno:2014/pagina_da:51/pagina_a:71/intervallo_pagine:51–71/volume:39
Ann.Acad.Sci.Fenn.Math.
Annales Academiae scientiarum Fennicae. Mathematica (Pain.) 39 (2014): 51–71. doi:10.5186/aasfm.2014.3907
info:cnr-pdr/source/autori:A. Lemenant, E. Milakis, and L. V. Spinolo/titolo:On the extension property of Reifenberg-flat domains/doi:10.5186%2Faasfm.2014.3907/rivista:Annales Academiae scientiarum Fennicae. Mathematica (Pain.)/anno:2014/pagina_da:51/pagina_a:71/intervallo_pagine:51–71/volume:39
We provide a detailed proof of the fact that any domain which is sufficiently flat in the sense of Reifenberg is also Jones-flat, and hence it is an extension domain. We discuss various applications of this property, in particular we obtain L^\infty
Autor:
Milakis, E., Silvestre, L.
Publikováno v:
Advances in Mathematics
Adv.Math.
Adv.Math.
We study the regularity of the solution to a fully nonlinear version of the thin obstacle problem. In particular we prove that the solution is C1, α for some small α > 0. This extends a result of Luis Caffarelli of 1979. Our proof relies on new est
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of functional analysis
264 (2013): 2097–2135. doi:10.1016/j.jfa.2013.02.006
info:cnr-pdr/source/autori:A. Lemenant, E. Milakis, and L. V. Spinolo/titolo:Spectral stability estimates for the Dirichlet and Neumann Laplacian in rough domains/doi:10.1016%2Fj.jfa.2013.02.006/rivista:Journal of functional analysis (Print)/anno:2013/pagina_da:2097/pagina_a:2135/intervallo_pagine:2097–2135/volume:264
Journal of Functional Analysis
J.Funct.Anal.
264 (2013): 2097–2135. doi:10.1016/j.jfa.2013.02.006
info:cnr-pdr/source/autori:A. Lemenant, E. Milakis, and L. V. Spinolo/titolo:Spectral stability estimates for the Dirichlet and Neumann Laplacian in rough domains/doi:10.1016%2Fj.jfa.2013.02.006/rivista:Journal of functional analysis (Print)/anno:2013/pagina_da:2097/pagina_a:2135/intervallo_pagine:2097–2135/volume:264
Journal of Functional Analysis
J.Funct.Anal.
In this paper we establish new quantitative stability estimates with respect to domain perturbations for all the eigenvalues of both the Neumann and the Dirichlet Laplacian. Our main results follow from an abstract lemma stating that it is actually s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2f03ff814e5ea9914144eea7c6aa1b0c
Autor:
Lemenant, A., Milakis, E.
Publikováno v:
Publicacions Matematiques
Publ.Mat.
Publ.Mat.
In this paper we prove that if ωk is a sequence of Reifenberg-flat domains in RN that converges to ω for the complementary Haus- dorff distance and if in addition the sequence ωk has a "uniform size of holes", then the solutions uk of a Neumann pr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______4485::74d65c96f0df742bc5e84928d16d169d
http://gnosis.library.ucy.ac.cy/handle/7/57219
http://gnosis.library.ucy.ac.cy/handle/7/57219