Zobrazeno 1 - 10
of 100
pro vyhledávání: '"Mikko, Kolehmainen"'
Publikováno v:
Energies, Vol 17, Iss 12, p 2840 (2024)
Accurate prediction of energy consumption in district heating systems plays an important role in supporting effective and clean energy production and distribution in dense urban areas. Predictive models are needed for flexible and cost-effective oper
Externí odkaz:
https://doaj.org/article/f0d3c1950b0b481086951bbf344f94d9
Publikováno v:
Annals of Medicine, Vol 54, Iss 1, Pp 1500-1510 (2022)
Objective The purpose of this study was to discover how considering multiplicative, additive, and interactive effects modifies results of a prospective cohort study on coronary heart disease (CHD) incidence and its main risk factors.Material and meth
Externí odkaz:
https://doaj.org/article/2bdd54577372408997f3202196d5daa3
Autor:
Daniel Gutierrez-Rojas, Aleksei Mashlakov, Christina Brester, Harri Niska, Mikko Kolehmainen, Arun Narayanan, Samuli Honkapuro, Pedro H. J. Nardelli
Publikováno v:
IEEE Access, Vol 9, Pp 163108-163121 (2021)
This paper aims to introduce a predictive weather-based control policy for the microgrid energy management to improve the resilience of the microgrid. This policy relies on the application of machine learning models for the prediction of microgrid lo
Externí odkaz:
https://doaj.org/article/cf98101c7a374e00a0d9bb1972ee3d95
Publikováno v:
Annals of Medicine, Vol 53, Iss 1, Pp 890-899 (2021)
AbstractBackground We carried out this study to demonstrate the effects of outcome sensitivity, participant exclusions, and covariate manipulations on results of the epidemiological analysis of coronary heart disease (CHD) and its behaviour-related r
Externí odkaz:
https://doaj.org/article/a2907ccbde124d74baf5d75a6dd84db9
Autor:
Jenni Inkinen, Sallamaari Siponen, Balamuralikrishna Jayaprakash, Ananda Tiwari, Anna-Maria Hokajärvi, Anna Pursiainen, Jenni Ikonen, Ari Kauppinen, Ilkka T. Miettinen, Jussi Paananen, Eila Torvinen, Mikko Kolehmainen, Tarja Pitkänen
Publikováno v:
Water Research X, Vol 12, Iss , Pp 100101- (2021)
The knowledge about the members of active archaea communities in DWDS is limited. The current understanding is based on high-throughput 16S ribosomal RNA gene (DNA-based) amplicon sequencing that reveals the diversity of active, dormant, and dead mem
Externí odkaz:
https://doaj.org/article/696a32258aae41af8f4c364073f14e66
Autor:
Jenni Inkinen, Balamuralikrishna Jayaprakash, Sallamaari Siponen, Anna-Maria Hokajärvi, Anna Pursiainen, Jenni Ikonen, Ivan Ryzhikov, Martin Täubel, Ari Kauppinen, Jussi Paananen, Ilkka T. Miettinen, Eila Torvinen, Mikko Kolehmainen, Tarja Pitkänen
Publikováno v:
Microbiome, Vol 7, Iss 1, Pp 1-17 (2019)
Abstract Background Eukaryotes are ubiquitous in natural environments such as soil and freshwater. Little is known of their presence in drinking water distribution systems (DWDSs) or of the environmental conditions that affect their activity and surv
Externí odkaz:
https://doaj.org/article/49b83cbe848f4e11a88545a34363234a
Publikováno v:
Renewable Energy. 207:266-274
Autor:
Christina Brester, Jussi Kauhanen, Tomi-Pekka Tuomainen, Sari Voutilainen, Mauno Rönkkö, Kimmo Ronkainen, Eugene Semenkin, Mikko Kolehmainen
Publikováno v:
BioData Mining, Vol 11, Iss 1, Pp 1-14 (2018)
Abstract Background The redundancy of information is becoming a critical issue for epidemiologists. High-dimensional datasets require new effective variable selection methods to be developed. This study implements an advanced evolutionary variable se
Externí odkaz:
https://doaj.org/article/3972bf4e75d44e209f039a165bfff975
Publikováno v:
Coronary Artery Disease.
Publikováno v:
Biostatistics & Epidemiology. :1-15