Zobrazeno 1 - 10
of 46
pro vyhledávání: '"Mikhailov, S. E."'
Autor:
Mikhailov, S. E., Portillo, C. F.
A mixed boundary value problem for the partial differential equation of diffusion in an inhomogeneous medium in a Lipschitz domain is reduced to a system of direct segregated parametrix-based Boundary-Domain Integral Equations (BDIEs). We use a param
Externí odkaz:
http://arxiv.org/abs/1809.02971
Autor:
Mikhailov, S. E., Portillo, C. F.
The mixed boundary value problem for a compressible Stokes system of partial differential equations in a bounded domain is reduced to two different systems of segregated direct Boundary Integral Equations (BDIEs) expressed in terms of surface and vol
Externí odkaz:
http://arxiv.org/abs/1805.00235
Publikováno v:
Math. Methods in Appl. Sci., Vol. 40, 7780-7829, 2017
The purpose of this paper is to study the mixed Dirichlet-Neumann boundary value problem for the semilinear Darcy-Forchheimer-Brinkman system in $L_p$-based Besov spaces on a bounded Lipschitz domain in ${\mathbb R}^3$, with $p$ in a neighborhood of
Externí odkaz:
http://arxiv.org/abs/1708.05955
Publikováno v:
Z. Angew. Math. Phys., (2016), 67:116, 30 p
The purpose of this paper is to obtain existence and uniqueness results in weighted Sobolev spaces for transmission problems for the non-linear Darcy-Forchheimer-Brinkman system and the linear Stokes system in two complementary Lipschitz domains in $
Externí odkaz:
http://arxiv.org/abs/1510.04981
Publikováno v:
Math. Methods in Appl. Sci., Vol. 40, 1817-1837, 2017
The paper deals with the three-dimensional Dirichlet boundary value problem (BVP) for a second order strongly elliptic self-adjoint system of partial differential equations in the divergence form with variable coefficients and develops the integral p
Externí odkaz:
http://arxiv.org/abs/1510.04974
Autor:
Hakim, L., Mikhailov, S. E.
Publikováno v:
Quarterly J. Mech. Appl. Math., Vol. 68, 387-41, 2015
A non-linear history-dependent cohesive zone model of crack propagation in linear elastic and visco-elastic materials is presented. The viscoelasticity is described by a linear Volterra integral operator in time. The normal stress on the cohesive zon
Externí odkaz:
http://arxiv.org/abs/1403.3708
Autor:
Mikhailov, S. E.
Publikováno v:
J. Math. Analysis Appl. 378, 2011, 324-342 (2012)
For functions from the Sobolev space $H^s(\Omega)$, 1/2
Externí odkaz:
http://arxiv.org/abs/0906.3875
Publikováno v:
The Journal of Integral Equations and Applications, 2009 Oct 01. 21(3), 405-445.
Externí odkaz:
https://www.jstor.org/stable/26163657
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.