Zobrazeno 1 - 10
of 79
pro vyhledávání: '"Mikhail I. Belishev"'
Autor:
Mikhail I. Belishev, Sergey Simonov
Publikováno v:
Journal of Mathematical Sciences. 252:592-601
The work is carried out as part of the program to construct a new functional (so-called wave) model of symmetric operators. It is shown that an abstract evolutionary dynamic system of the first order (with respect to time) with boundary control, whic
Publikováno v:
Journal of Mathematical Sciences. 252:576-591
A dynamical system $$ {\displaystyle \begin{array}{ll}{u}_{tt}-\Delta u-\nabla 1\mathrm{n}\;\rho \cdot \nabla u=0& in\kern0.6em {\mathrm{\mathbb{R}}}_{+}^3\times \left(0,T\right),\\ {}{\left.u\right|}_{t=0}={\left.{u}_t\right|}_{t=0}=0& in\kern0.6em
Publikováno v:
SIAM Journal on Mathematical Analysis. 53:5278-5287
Let $(M,g)$ be a smooth compact two-dimensional Riemannian manifold with boundary, and $\Lambda_g: f\mapsto\partial_\nu u|_{\partial M}$ its Dirichlet-to-Neumann map, where $u$ obeys $\Delta_g u=0$...
Autor:
D. V. Korikov, Mikhail I. Belishev
Publikováno v:
Journal of Inverse and Ill-posed Problems. 29:339-349
Let ( Ω , g ) {(\Omega,g)} be a smooth compact two-dimensional Riemannian manifold with boundary and let Λ g : f ↦ ∂ ν u | ∂ Ω {\Lambda_{g}:f\mapsto\partial_{\nu}u|_{\partial\Omega}} be its DN map, where u obeys Δ g u = 0 {\Del
Autor:
Sergey Simonov, Mikhail I. Belishev
Publikováno v:
Sbornik: Mathematics. 211:521-538
Let be a complete metric space and let be a Borel measure on . Under certain fairly general assumptions about the metric and the measure, we use lattice theory to construct an isometric copy of the space , which is called its wave model. The construc
Autor:
Mikhail I. Belishev, Sergey Simonov
Publikováno v:
Математический сборник. 211:44-62
Пусть $(\Omega,d)$ есть полное метрическое пространство, $\mu$ - борелева мера на $\Omega$. В работе при некоторых условиях достаточно общего характ
Autor:
A. F. Vakulenko, Mikhail I. Belishev
Publikováno v:
St. Petersburg Mathematical Journal. 31:1-12
Autor:
Sergey Simonov, Mikhail I. Belishev
Publikováno v:
Functional Analysis and Its Applications. 53:79-85
Let Ω be a metric space. By At we denote the metric neighborhood of radius t of a set A ⊂ Ω and by $$\mathfrak{D}$$ , the lattice of open sets in Ω with partial order ⊆ and order convergence. The lattice of $$\mathfrak{D}$$ -valued functions o
Autor:
Mikhail I. Belishev
Publikováno v:
Journal of Mathematical Sciences. 238:591-600
The well-known fact following from the Holmgren-John-Tataru uniqueness theorem is a local approximate boundary L2-controllability of the dynamical system governed by the wave equation. Generalizing this result, we establish the controllability in cer
Publikováno v:
Journal of Inverse and Ill-posed Problems. 27:241-254
We consider the problem of reconstruction of the Cauchy data for the wave equation in ℝ 3 {\mathbb{R}^{3}} and ℝ 2 {\mathbb{R}^{2}} by the measurements of its solution on the boundary of the unit ball.