Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Mikel Elkano"'
Publikováno v:
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
instname
Academica-e: Repositorio Institucional de la Universidad Pública de Navarra
Universidad Pública de Navarra
instname
Academica-e: Repositorio Institucional de la Universidad Pública de Navarra
Universidad Pública de Navarra
Interpretability has always been a major concern for fuzzy rule-based classifiers. The usage of human-readable models allows them to explain the reasoning behind their predictions and decisions. However, when it comes to Big Data classification probl
Publikováno v:
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
instname
instname
The definition of linguistic terms is a critical part of the construction of any fuzzy classifier. Fuzzy partitioning methods (FPMs) range from simple uniform partitioning to sophisticated optimization algorithms. In this paper we present FUZZ-EQ, a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f717df16fa42cc496f2d3c4ad5956ab6
https://hdl.handle.net/2454/39206
https://hdl.handle.net/2454/39206
Publikováno v:
Fuzzy Sets and Systems. 348:75-101
The previous Fuzzy Rule-Based Classification Systems (FRBCSs) for Big Data problems consist in concurrently learning multiple Chi et al. FRBCSs whose rule bases are then aggregated. The problem of this approach is that different models are obtained w
Autor:
Paula Fernanda Schiavo, Humberto Bustince, Graaliz Pereira Dimuro, Mikel Galar, Sidnei Pereira, Eduardo Nunes Borges, Jos Antonio Sanz, Mikel Elkano
Publikováno v:
Applied Soft Computing. 67:728-740
Display Omitted A consensus method via penalty functions for decision making in ensembles of fuzzy rule-based classification systems is introduced.Overlap indices are built using overlap functions.A method for constructing confidence and support meas
Publikováno v:
Neurocomputing. 287:22-33
The growing amount of available data has become a serious challenge to data mining and machine learning techniques. Well-known classification methods that have been widely applied so far are no longer feasible in Big Data environments. For this reaso
Autor:
Maria Jos Asiain, Humberto Bustince, Benjamn Bedregal, Mikel Elkano, Graaliz Pereira Dimuro, Giancarlo Lucca, Jos Antonio Sanz
Publikováno v:
Knowledge-Based Systems. 119:32-43
This paper introduces the concept of Choquet-like Copula-based aggregation function (CC-integral) and its application in fuzzy rule-based classification systems. The standard Choquet integral is expanded by distributing the product operation. Then, t
Publikováno v:
BigData Congress
We present a new distributed fuzzy partitioning method to reduce the complexity of multi-way fuzzy decision trees in Big Data classification problems. The proposed algorithm builds a fixed number of fuzzy sets for all variables and adjusts their shap
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9dd1057151fbcf1515bec68d48e0c0af
http://arxiv.org/abs/1903.00345
http://arxiv.org/abs/1903.00345
Publikováno v:
FUZZ-IEEE
Academica-e: Repositorio Institucional de la Universidad Pública de Navarra
Universidad Pública de Navarra
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
instname
Academica-e: Repositorio Institucional de la Universidad Pública de Navarra
Universidad Pública de Navarra
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
instname
The Era of Big Data has forced researchers to explore new distributed solutions for building fuzzy classifiers, which often introduce approximation errors or make strong assumptions to reduce computational and memory requirements. As a result, Big Da
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cfbb1c807790fbeebe220858bff62b4c
https://hdl.handle.net/2454/36949
https://hdl.handle.net/2454/36949
Autor:
Barbara Pekala, Mikel Galar, Mikel Elkano, Urszula Bentkowska, Humberto Bustince, José Antonio Sanz
Publikováno v:
Information Sciences. 369:690-703
We study interval-valued fuzzy relations for the Generalized Modus Ponens.We study the composition of these relations using interval aggregation functions.We study the properties of these compositions.We develop an inference method using interval-val
Autor:
José Antonio Sanz, Francisco Herrera, Saleh Alshomrani, Alberto Fernández, Mikel Galar, Humberto Bustince, Mikel Elkano
Publikováno v:
International Journal of Approximate Reasoning. 73:108-122
Classification problems with multiple classes suppose a challenge in Data Mining tasks. There is a difficulty inherent to the learning process when trying to find the most adequate discrimination functions among the different concepts within the data