Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Mike Pereira"'
Publikováno v:
IEEE Transactions on Intelligent Transportation Systems. 24:6268-6279
Publikováno v:
AIAA SCITECH 2023 Forum.
Large or very large spatial (and spatio-temporal) datasets have become common place in many environmental and climate studies. These data are often collected in non-Euclidean spaces (such as the planet Earth) and they often present nonstationary anis
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e151b134764a9b34f3505da361ace538
http://arxiv.org/abs/2208.12501
http://arxiv.org/abs/2208.12501
Autor:
Fernanda Viana, Alcebíades Negrão Macêdo, Marco Antonio Barbosa de Oliveira, Mike Pereira da Silva, Marcelo de Souza Picanço
Publikováno v:
Brazilian Journal of Development. 6:84030-85043
Publikováno v:
Transportation Research Part C: Emerging Technologies. 142:103772
In this work, we propose an algorithm performing short-term predictions of the flux of vehicles on a stretch of road, using past measurements of the flux. This algorithm is based on a physics-aware recurrent neural network. A discretization of a macr
The main motivation of this work is to assess the validity of a LWR traffic flow model to model measurements obtained from trajectory data, and propose extensions of this model to improve it. A formulation for a discrete dynamical system is proposed
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a393f5c5483b9a294fcacd3db90c019b
Publikováno v:
AIAA AVIATION 2020 FORUM.
Autor:
Mike Pereira
Publikováno v:
Signal and Image processing. Université Paris sciences et lettres, 2019. English. ⟨NNT : 2019PSLEM055⟩
HAL
HAL
Geostatistics is the branch of statistics attached to model spatial phenomena through probabilistic models. In particular, the spatial phenomenon is described by a (generally Gaussian) random field, and the observed data are considered as resulting f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::0a6d7a5b0ecfd19c21fd68500a3e1b21
https://pastel.archives-ouvertes.fr/tel-02499376/document
https://pastel.archives-ouvertes.fr/tel-02499376/document
Autor:
Nicolas Desassis, Mike Pereira
Publikováno v:
Spatial Statistics
Spatial Statistics, Elsevier, 2019, 31, pp.100359. ⟨10.1016/j.spasta.2019.100359⟩
Spatial Statistics, Elsevier, 2019, 31, pp.100359. ⟨10.1016/j.spasta.2019.100359⟩
This paper presents an algorithm to simulate Gaussian random vectors whose precision matrix can be expressed as a polynomial of a sparse matrix. This situation arises in particular when simulating Gaussian Markov random fields obtained by the discret
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1af053fee37bf89f838f2515cc9c62a4
https://hal-mines-paristech.archives-ouvertes.fr/hal-02075386
https://hal-mines-paristech.archives-ouvertes.fr/hal-02075386
Publikováno v:
AIAA Scitech 2019 Forum.