Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Mikaela Iacobelli"'
Autor:
Mikaela Iacobelli, Antoine Gagnebin
This paper studies the nonlinear Landau damping on the torus $\mathbb{T}^d$ for the Vlasov-Poisson system with massless electrons (VPME). We consider solutions with analytic or Gevrey ($\gamma > 1/3$) initial data, close to a homogeneous equilibrium
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9d8977e1a699b46f6522242011fec1c7
Autor:
Mikaela Iacobelli
Publikováno v:
Discrete & Continuous Dynamical Systems - A. 39:4929-4943
In this paper we study the asymptotic behavior of a very fast diffusion PDE in 1D with periodic boundary conditions. This equation is motivated by the gradient flow approach to the problem of quantization of measures introduced in [ 3 ]. We prove exp
Publikováno v:
Communications in Partial Differential Equations, 46 (10)
Communications in partial differential equations, 2021, Vol.46(10), pp.1892-1939 [Peer Reviewed Journal]
Communications in partial differential equations, 2021, Vol.46(10), pp.1892-1939 [Peer Reviewed Journal]
The Vlasov-Poisson system with massless electrons (VPME) is widely used in plasma physics to model the evolution of ions in a plasma. It differs from the Vlasov-Poisson system (VP) for electrons in that the Poisson coupling has an exponential nonline
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eff1a3cc8f81c3fd322c1b78289f5521
https://hdl.handle.net/20.500.11850/488014
https://hdl.handle.net/20.500.11850/488014
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9783030697839
In these notes we summarise some recent developments on the existence and uniqueness theory for Vlasov-type equations, both on the torus and on the whole space.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::841fe10712b8df669e832d4d5c55ab2d
https://doi.org/10.1007/978-3-030-69784-6_14
https://doi.org/10.1007/978-3-030-69784-6_14
Publikováno v:
Recent Advances in Kinetic Equations and Applications ISBN: 9783030829452
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6248293f03402018b6b7a7c790cebbe1
https://doi.org/10.1007/978-3-030-82946-9_9
https://doi.org/10.1007/978-3-030-82946-9_9
Autor:
Mikaela Iacobelli, Daniel Han-Kwan
Publikováno v:
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society, American Mathematical Society, 2021, ⟨10.1090/proc/15349⟩
Proceedings of the American Mathematical Society, American Mathematical Society, 2021, ⟨10.1090/proc/15349⟩
Vlasov equations can be formally derived from N-body dynamics in the mean-field limit. In some suitable singular limits, they may themselves converge to fluid dynamics equations. Motivated by this heuristic, we introduce natural scalings under which
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a3c730743540c40479da15d8fedc0004
https://hal.archives-ouvertes.fr/hal-02965141
https://hal.archives-ouvertes.fr/hal-02965141
Autor:
Mikaela Iacobelli, Daniel Han-Kwan
Publikováno v:
Journal of Differential Equations
Journal of Differential Equations, Elsevier, 2017, 263 (1), pp.1-25. ⟨10.1016/j.jde.2017.01.018⟩
Journal of Differential Equations, Elsevier, 2017, 263 (1), pp.1-25. ⟨10.1016/j.jde.2017.01.018⟩
This work is concerned with the quasineutral limit of the Vlasov–Poisson system in two and three dimensions. We justify the formal limit for very small but rough perturbations of analytic initial data, generalizing the results of [12] to higher dim
Publikováno v:
Archive for rational mechanics and analysis, 2019, Vol.232(3), pp.1165-1206 [Peer Reviewed Journal]
Archive for Rational Mechanics and Analysis, 232 (3)
Archive for Rational Mechanics and Analysis, 232 (3)
In this paper we devote our attention to a class of weighted ultrafast diffusion equations arising from the problem of quantisation for probability measures. These equations have a natural gradient flow structure in the space of probability measures
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4295051770e1e70f70536e7b0b9077bd
http://dro.dur.ac.uk/26697/
http://dro.dur.ac.uk/26697/
Publikováno v:
Kinetic & Related Models, 2021, Vol.14(4), pp.571-597 [Peer Reviewed Journal]
Systems of Vlasov-Poisson type are kinetic models describing dilute plasma. The structure of the model differs according to whether it describes the electrons or positively charged ions in the plasma. In contrast to the electron case, where the well-
Autor:
Mikaela Iacobelli
Publikováno v:
ESAIM: Control, Optimisation and Calculus of Variations. 22:770-785
In this paper we study the quantization problem for probability measures on Riemannian manifolds. Under a suitable assumption on the growth at infinity of the measure we find asymptotic estimates for the quantization error, generalizing the results o