Zobrazeno 1 - 10
of 46
pro vyhledávání: '"Miihkinen, Santeri"'
Autor:
Bellavita, Carlo, Daskalogiannis, Vassilis, Miihkinen, Santeri, Norrbo, David, Stylogiannis, Georgios, Virtanen, J. A.
In this article we study the generalized Hilbert matrix operator $\Gamma_\mu$ acting on the Bergman spaces $A^p$ of the unit disc for $1\leq p<\infty$. In particular, we characterize the measures $\mu$ for which the operator $\Gamma_\mu$ is bounded a
Externí odkaz:
http://arxiv.org/abs/2407.13569
We compute the exact value of the essential norm of a generalized Hilbert matrix operator acting on weighted Bergman spaces $A^p_v$ and weighted Banach spaces $H^\infty_v$ of analytic functions, where $v$ is a general radial weight. In particular, we
Externí odkaz:
http://arxiv.org/abs/2201.09591
We establish that the Volterra-type integral operator $J_b$ on the Hardy spaces $H^p$ of the unit ball $\mathbb{B}_n$ exhibits a rather strong rigid behavior. More precisely, we show that the compactness, strict singularity and $\ell^p$-singularity o
Externí odkaz:
http://arxiv.org/abs/2004.12671
Let $\mathbb B_n$ be the open unit ball in $\mathbb C^n$. We characterize the spectra of pointwise multipliers $M_u$ acting on Banach spaces of analytic functions on $\mathbb B_n$ satisfying some general conditions. These spaces include Bergman-Sobol
Externí odkaz:
http://arxiv.org/abs/2002.07035
In this article, the open problem of finding the exact value of the norm of the Hilbert matrix operator on weighted Bergman spaces $A^p_\alpha$ is adressed. The norm was conjectured to be $\frac{\pi}{\sin \frac{(2+\alpha)\pi}{p}}$ by Karapetrovi\'{c}
Externí odkaz:
http://arxiv.org/abs/2001.10476
We completely characterize the boundedness of the Volterra type integration operators $J_b$ acting from the weighted Bergman spaces $A^p_\alpha$ to the Hardy spaces $H^q$ of the unit ball of $\mathbb{C}^n$ for all $0
Externí odkaz:
http://arxiv.org/abs/1904.00359
We show that every non-compact weighted composition operator $f \mapsto u\cdot (f\circ\phi)$ acting on a Hardy space $H^p$ for $1 \leq p < \infty$ fixes an isomorphic copy of the sequence space $\ell^p$ and therefore fails to be strictly singular. We
Externí odkaz:
http://arxiv.org/abs/1809.05118
Autor:
Miihkinen, Santeri, Virtanen, Jani A.
The geometric descriptions of the (essential) spectra of Toeplitz operators with piecewise continuous symbols are among the most beautiful results about Toeplitz operators on Hardy spaces $H^p$ with $1
Externí odkaz:
http://arxiv.org/abs/1808.01788
Very recently, Bo\v{z}in and Karapetrovi\'c solved a conjecture by proving that the norm of the Hilbert matrix operator $\mathcal{H}$ on the Bergman space $A^p$ is equal to $\frac{\pi}{\sin(\frac{2\pi}{p})}$ for $2 < p < 4.$ In this article we presen
Externí odkaz:
http://arxiv.org/abs/1805.07804
We show that the non-compact generalised analytic Volterra operators $T_g$, where $g \in \mathit{BMOA}$, have the following structural rigidity property on the Hardy spaces $H^p$ for $1 \le p < \infty$ and $p \neq 2$: if $T_g$ is bounded below on an
Externí odkaz:
http://arxiv.org/abs/1710.01252