Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Mihatsch, Andreas"'
Autor:
Hultberg, Nuno, Mihatsch, Andreas
We prove new fundamental lemma and arithmetic fundamental lemma identities for general linear groups over quaternion division algebras. In particular, we verify the transfer conjeture and the arithmetic transfer conjecture from arXiv:2307.11716 in ca
Externí odkaz:
http://arxiv.org/abs/2308.02458
Autor:
Li, Qirui, Mihatsch, Andreas
We formulate Guo--Jacquet type fundamental lemma conjectures and arithmetic transfer conjectures for inner forms of $GL_{2n}$. Our main results confirm these conjectures for division algebras of invariant $1/4$ and $3/4$.
Comment: Minor revision
Comment: Minor revision
Externí odkaz:
http://arxiv.org/abs/2307.11716
Autor:
Li, Qirui, Mihatsch, Andreas
The linear Arithmetic Fundamental Lemma (AFL) conjecture compares intersection numbers on Lubin--Tate deformation spaces with derivatives of orbital integrals. It has been introduced for elliptic orbits in arXiv:1803.07553 and arXiv:2010.07365. In th
Externí odkaz:
http://arxiv.org/abs/2208.10144
Autor:
Mihatsch, Andreas
We extend Gubler--K\"unnemann's theory of $\delta$-forms from algebraic varieties to good Berkovich spaces. This is based on the observation that skeletons in such spaces satisfy a tropical balance condition. Our main result is that complete intersec
Externí odkaz:
http://arxiv.org/abs/2112.10018
Autor:
Mihatsch, Andreas
We develop a tropical intersection formalism of forms and currents that extends classical tropical intersection theory in two ways. First, it allows to work with arbitrary polytopes, also non-rational ones. Second, it allows for smooth differential f
Externí odkaz:
http://arxiv.org/abs/2107.12067
Autor:
Mihatsch, Andreas, Zhang, Wei
We prove the arithmetic fundamental lemma conjecture over a general $p$-adic field with odd residue cardinality $q\geq \dim V$. Our strategy is similar to the one used by the second author during his proof of the AFL over $\mathbb{Q}_p$ (arXiv:1909.0
Externí odkaz:
http://arxiv.org/abs/2104.02779
Autor:
Mihatsch, Andreas
Publikováno v:
Alg. Number Th. 16 (2022) 505-519
We prove that, in certain situations, intersection numbers on formal schemes that come in profinite families vary locally constantly in the parameter. To this end, we define the product $S\times M$ of a profinite set $S$ with a locally noetherian for
Externí odkaz:
http://arxiv.org/abs/2004.12172
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Mihatsch, Andreas
We verify new cases of the Arithmetic Fundamental Lemma (AFL) of Wei Zhang. This relies on a recursive algorithm which allows, under certain conditions, to reduce the AFL identity in question to an AFL identity in lower dimension. The main ingredient
Externí odkaz:
http://arxiv.org/abs/1611.06520
Autor:
Mihatsch, Andreas
We prove that the Arithmetic Fundamental Lemma conjecture of Wei Zhang is equivalent to a similar conjecture, but for Lie algebras, in the case of non-degenerate intersection. We use this result to give a simplified proof of the AFL for $n=3$. The id
Externí odkaz:
http://arxiv.org/abs/1502.02855