Zobrazeno 1 - 10
of 130
pro vyhledávání: '"Mihailescu, Mihai"'
Autor:
Grecu, Andrei, Mihăilescu, Mihai
Publikováno v:
In Nonlinear Analysis: Real World Applications October 2024 79
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Mihăilescu, Mihai
Publikováno v:
In Journal of Differential Equations 25 October 2022 335:103-119
Publikováno v:
In Applied Mathematics Letters November 2021 121
Publikováno v:
J. Math. Pures Appl. 93:2 (2010), 132-148
In this paper we study a non-homogeneous eigenvalue problem involving variable growth conditions and a potential $V$. The problem is analyzed in the context of Orlicz-Sobolev spaces. Connected with this problem we also study the optimization problem
Externí odkaz:
http://arxiv.org/abs/1608.07062
Autor:
Mihăilescu, Mihai, Repovš, Dušan
Publikováno v:
Appl. Math. Comp. 217:14 (2011), 6624-6632
We study a non-homogeneous boundary value problem in a smooth bounded domain in $\mathbb{R}^N$. We prove the existence of at least two nonnegative and non-trivial weak solutions. Our approach relies on Orlicz-Sobolev spaces theory combined with adequ
Externí odkaz:
http://arxiv.org/abs/1603.05042
Autor:
Mihăilescu, Mihai, Repovš, Dušan
Publikováno v:
Nonlinear Anal. 75:2 (2012), 975-981
This paper establishes existence of solutions for a partial differential equation in which a differential operator involving variable exponent growth conditions is present. This operator represents a generalization of the $p(\cdot)$-Laplace operator,
Externí odkaz:
http://arxiv.org/abs/1603.05046
Autor:
Mihăilescu, Mihai, Repovš, Dušan
Publikováno v:
Bull. Belg. Math. Soc. Simon Stevin 18:5 (2011), 839-847
We study an eigenvalue problem involving a degenerate and singular elliptic operator on the whole space $\mathbb{R}^N$. We prove the existence of an unbounded and increasing sequence of eigenvalues. Our study generalizes to the case of degenerate and
Externí odkaz:
http://arxiv.org/abs/1603.05039
Autor:
Mihailescu, Mihai, Radulescu, Vicentiu
Publikováno v:
Annales de l'Institut Fourier (2008) vol. 58
We study a nonlinear Neumann boundary value problem associated to a nonhomogeneous differential operator. Taking into account the competition between the nonlinearity and the bifurcation parameter, we establish sufficient conditions for the existence
Externí odkaz:
http://arxiv.org/abs/0712.2185
Autor:
Mihailescu, Mihai, Radulescu, Vicentiu
We study the nonlinear eigenvalue problem $-{\rm div}(a(|\nabla u|)\nabla u)=\lambda|u|^{q(x)-2}u$ in $\Omega$, $u=0$ on $\partial\Omega$, where $\Omega$ is a bounded open set in $\RR^N$ with smooth boundary, $q$ is a continuous function, and $a$ is
Externí odkaz:
http://arxiv.org/abs/0711.0904