Zobrazeno 1 - 10
of 58
pro vyhledávání: '"Mihai-Cosmin Marinica"'
Autor:
Thomas Bilyk, Alexandra. M. Goryaeva, Mihai-Cosmin Marinica, Camille Flament, Catherine Sabathier, Eric Leroy, Marie Loyer-Prost, Estelle Meslin
Publikováno v:
Scientific Reports, Vol 14, Iss 1, Pp 1-11 (2024)
Abstract In-depth statistics of individual defects observed during transmission electron microscopy (TEM) experiments are essential for the thorough characterization of materials. In this study, we aim to quantitatively characterize the population of
Externí odkaz:
https://doaj.org/article/09d54c984cc246a58903676b7aac31c5
Compact A15 Frank-Kasper nano-phases at the origin of dislocation loops in face-centred cubic metals
Autor:
Alexandra M. Goryaeva, Christophe Domain, Alain Chartier, Alexandre Dézaphie, Thomas D. Swinburne, Kan Ma, Marie Loyer-Prost, Jérôme Creuze, Mihai-Cosmin Marinica
Publikováno v:
Nature Communications, Vol 14, Iss 1, Pp 1-12 (2023)
Abstract It is generally considered that the elementary building blocks of defects in face-centred cubic (fcc) metals, e.g., interstitial dumbbells, coalesce directly into ever larger 2D dislocation loops, implying a continuous coarsening process. He
Externí odkaz:
https://doaj.org/article/ba0b37b368b54d80a2953c6e7809a8ad
Autor:
Svetoslav Nikolov, Mitchell A. Wood, Attila Cangi, Jean-Bernard Maillet, Mihai-Cosmin Marinica, Aidan P. Thompson, Michael P. Desjarlais, Julien Tranchida
Publikováno v:
npj Computational Materials, Vol 7, Iss 1, Pp 1-12 (2021)
Abstract A data-driven framework is presented for building magneto-elastic machine-learning interatomic potentials (ML-IAPs) for large-scale spin-lattice dynamics simulations. The magneto-elastic ML-IAPs are constructed by coupling a collective atomi
Externí odkaz:
https://doaj.org/article/d348af2bd3da41768c9cb3ef7706b759
Autor:
Alexandra M. Goryaeva, Clovis Lapointe, Chendi Dai, Julien Dérès, Jean-Bernard Maillet, Mihai-Cosmin Marinica
Publikováno v:
Nature Communications, Vol 11, Iss 1, Pp 1-14 (2020)
The presence of defects in crystalline solids affects material properties, the precise knowledge of defect characteristics being highly desirable. Here the authors demonstrate a machine-learning outlier detection method based on distortion score as a
Externí odkaz:
https://doaj.org/article/9c4d246c54c44202a50b99c9a8ea072c
Autor:
Jacopo Baima, Alexandra M. Goryaeva, Thomas D. Swinburne, Jean-Bernard Maillet, Maylise Nastar, Mihai-Cosmin Marinica
Publikováno v:
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics, 2022, https://doi.org/10.1039/D2CP01917E. ⟨10.1039/D2CP01917E⟩
Physical Chemistry Chemical Physics, 2022, https://doi.org/10.1039/D2CP01917E. ⟨10.1039/D2CP01917E⟩
International audience; Free energy calculations in materials science are routinely hindered by the need to provide re-action coordinates that can meaningfully partition atomic configuration space, a prerequisite formost enhanced sampling approaches.
Autor:
Anruo Zhong, Clovis Lapointe, Alexandra M. Goryaeva, Jacopo Baima, Manuel Athènes, Mihai-Cosmin Marinica
Publikováno v:
Physical Review Materials. 7
Autor:
Petr Grigorev, Alexandra M. Goryaeva, Mihai-Cosmin Marinica, James R. Kermode, Thomas D. Swinburne
Publikováno v:
Acta Materialia
Acta Materialia, 2023, 247, pp.118734. ⟨10.1016/j.actamat.2023.118734⟩
Acta Materialia, 2023, 247, pp.118734. ⟨10.1016/j.actamat.2023.118734⟩
International audience; Calculations of dislocation-defect interactions are essential to model metallic strength, but the required system sizes are at or beyond ab initio limits. Current estimates thus have extrapolation or finite size errors that ar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1594f3d51993a8f6d9f4d556d6d3c5f3
https://hal.science/hal-03993850/document
https://hal.science/hal-03993850/document
Autor:
Mitchell Wood, Mihai-Cosmin Marinica, Jean-Bernard Maillet, Michael P. Desjarlais, Aidan P. Thompson, Attila Cangi, Svetoslav Nikolov, Julien Tranchida
Publikováno v:
npj Computational Materials, Vol 7, Iss 1, Pp 1-12 (2021)
A data-driven framework is presented for building magneto-elastic machine-learning interatomic potentials (ML-IAPs) for large-scale spin-lattice dynamics simulations. The magneto-elastic ML-IAPs are constructed by coupling a collective atomic spin mo
Autor:
Clovis Lapointe, Thomas D. Swinburne, Laurent Proville, Charlotte S. Becquart, Normand Mousseau, Mihai-Cosmin Marinica
Publikováno v:
Physical Review Materials
Physical Review Materials, 2022, Physical Review Materials, 6 (11), pp.113803. ⟨10.1103/physrevmaterials.6.113803⟩
Physical Review Materials, 2022, Physical Review Materials, 6 (11), pp.113803. ⟨10.1103/physrevmaterials.6.113803⟩
International audience; Machine learning surrogate models employing atomic environment descriptors have found wide applicability in materials science. In our previous work, this approach yielded accurate and transferable predictions of the vibrationa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::347caf7fb2bc059876b39400cca5cee4
https://hal.univ-lille.fr/hal-03879650
https://hal.univ-lille.fr/hal-03879650
Autor:
Mouad Ramil, Caroline Boudier, Alexandra M. Goryaeva, Mihai-Cosmin Marinica, Jean-Bernard Maillet
Publikováno v:
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation, 2022, 18, pp.5864. ⟨10.1021/acs.jctc.2c00314⟩
Journal of Chemical Theory and Computation, 2022, 18, pp.5864. ⟨10.1021/acs.jctc.2c00314⟩
International audience; Sampling the Minimum Energy Path (MEP) between two minima of a system is often hindered by the presence of an energy barrier separating the two metastable states. As a consequence, direct sampling based on Molecular Dynamics o