Zobrazeno 1 - 10
of 414
pro vyhledávání: '"Mihai, Gabriel"'
Autor:
Ştefan, Liviu-Daniel, Stanciu, Dan-Cristian, Dogariu, Mihai, Constantin, Mihai Gabriel, Jitaru, Andrei Cosmin, Ionescu, Bogdan
Recent advancements in Generative Adversarial Networks (GANs) have enabled photorealistic image generation with high quality. However, the malicious use of such generated media has raised concerns regarding visual misinformation. Although deepfake de
Externí odkaz:
http://arxiv.org/abs/2404.00114
Autor:
Bianca Petre-Mandache, Emilia Burada, Mihai Gabriel Cucu, Diter Atasie, Anca-Lelia Riza, Ioana Streață, Radu Mitruț, Răzvan Pleșea, Amelia Dobrescu, Andrei Pîrvu, Gabriela Popescu-Hobeanu, Paul Mitruț, Florin Burada
Publikováno v:
Current Oncology, Vol 31, Iss 10, Pp 6406-6418 (2024)
Colorectal cancer (CRC) is a major public health problem worldwide, currently ranking third in cancer incidence and second in mortality. Multiple genes and environmental factors have been involved in the complex and multifactorial process of CRC carc
Externí odkaz:
https://doaj.org/article/f47b0aa1510d4090890fd2665d485e79
Autor:
Sweeney, Lorin, Constantin, Mihai Gabriel, Demarty, Claire-Hélène, Fosco, Camilo, de Herrera, Alba G. Seco, Halder, Sebastian, Healy, Graham, Ionescu, Bogdan, Matran-Fernandez, Ana, Smeaton, Alan F., Sultana, Mushfika
This paper describes the 5th edition of the Predicting Video Memorability Task as part of MediaEval2022. This year we have reorganised and simplified the task in order to lubricate a greater depth of inquiry. Similar to last year, two datasets are pr
Externí odkaz:
http://arxiv.org/abs/2212.06516
Autor:
de Herrera, Alba García Deco, Constantin, Mihai Gabriel, Demarty, Chaire-Hélène, Fosco, Camilo, Halder, Sebastian, Healy, Graham, Ionescu, Bogdan, Matran-Fernandez, Ana, Smeaton, Alan F., Sultana, Mushfika, Sweeney, Lorin
The Predicting Media Memorability task in the MediaEval evaluation campaign has been running annually since 2018 and several different tasks and data sets have been used in this time. This has allowed us to compare the performance of many memorabilit
Externí odkaz:
http://arxiv.org/abs/2212.03955
Publikováno v:
Studies in Business and Economics, Vol 19, Iss 1, Pp 255-275 (2024)
Recently, researchers worldwide have shown a significant interest in bibliometric analysis, and it has proved to be a useful and valuable tool for aggregating data on our research. Our paper aims to explore bibliometric analysis in the framework of t
Externí odkaz:
https://doaj.org/article/bf21ea6cfce7485fa0b1e46831140700
Autor:
Kiziltepe, Rukiye Savran, Constantin, Mihai Gabriel, Demarty, Claire-Helene, Healy, Graham, Fosco, Camilo, de Herrera, Alba Garcia Seco, Halder, Sebastian, Ionescu, Bogdan, Matran-Fernandez, Ana, Smeaton, Alan F., Sweeney, Lorin
This paper describes the MediaEval 2021 Predicting Media Memorability}task, which is in its 4th edition this year, as the prediction of short-term and long-term video memorability remains a challenging task. In 2021, two datasets of videos are used:
Externí odkaz:
http://arxiv.org/abs/2112.05982
Autor:
Kiziltepe, Rukiye Savran, Sweeney, Lorin, Constantin, Mihai Gabriel, Doctor, Faiyaz, de Herrera, Alba Garcia Seco, Demarty, Claire-Helene, Healy, Graham, Ionescu, Bogdan, Smeaton, Alan F.
Publikováno v:
Data in Brief, Volume 39, 107671, (2021), ISSN 2352-3409
Using a collection of publicly available links to short form video clips of an average of 6 seconds duration each, 1,275 users manually annotated each video multiple times to indicate both long-term and short-term memorability of the videos. The anno
Externí odkaz:
http://arxiv.org/abs/2112.02303
Autor:
De Herrera, Alba García Seco, Kiziltepe, Rukiye Savran, Chamberlain, Jon, Constantin, Mihai Gabriel, Demarty, Claire-Hélène, Doctor, Faiyaz, Ionescu, Bogdan, Smeaton, Alan F.
Publikováno v:
MediaEval Multimedia Benchmark Workshop Working Notes, 14-15 December 2020
This paper describes the MediaEval 2020 \textit{Predicting Media Memorability} task. After first being proposed at MediaEval 2018, the Predicting Media Memorability task is in its 3rd edition this year, as the prediction of short-term and long-term v
Externí odkaz:
http://arxiv.org/abs/2012.15650
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.