Zobrazeno 1 - 10
of 216
pro vyhledávání: '"Mihăilescu, Mihai"'
Publikováno v:
Comptes Rendus. Mathématique, Vol 360, Iss G9, Pp 993-1000 (2022)
Let $D>1$ be a fixed integer. Given a smooth bounded, convex domain $\Omega \subset \mathbb{R}^D$ and $H:\mathbb{R}^D\rightarrow [0,\infty )$ a convex, even, and $1$-homogeneous function of class $C^{3,\alpha }(\mathbb{R}^D\setminus \lbrace 0\rbrace
Externí odkaz:
https://doaj.org/article/2d4fc6c9713c4014881e97c8dcbe2f1a
Autor:
Grecu, Andrei, Mihăilescu, Mihai
Publikováno v:
In Nonlinear Analysis: Real World Applications October 2024 79
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Mihăilescu, Mihai
Publikováno v:
In Journal of Differential Equations 25 October 2022 335:103-119
Publikováno v:
In Applied Mathematics Letters November 2021 121
Publikováno v:
J. Math. Pures Appl. 93:2 (2010), 132-148
In this paper we study a non-homogeneous eigenvalue problem involving variable growth conditions and a potential $V$. The problem is analyzed in the context of Orlicz-Sobolev spaces. Connected with this problem we also study the optimization problem
Externí odkaz:
http://arxiv.org/abs/1608.07062
Autor:
Mihăilescu, Mihai, Repovš, Dušan
Publikováno v:
Appl. Math. Comp. 217:14 (2011), 6624-6632
We study a non-homogeneous boundary value problem in a smooth bounded domain in $\mathbb{R}^N$. We prove the existence of at least two nonnegative and non-trivial weak solutions. Our approach relies on Orlicz-Sobolev spaces theory combined with adequ
Externí odkaz:
http://arxiv.org/abs/1603.05042
Autor:
Mihăilescu, Mihai, Repovš, Dušan
Publikováno v:
Nonlinear Anal. 75:2 (2012), 975-981
This paper establishes existence of solutions for a partial differential equation in which a differential operator involving variable exponent growth conditions is present. This operator represents a generalization of the $p(\cdot)$-Laplace operator,
Externí odkaz:
http://arxiv.org/abs/1603.05046
Autor:
Mihăilescu, Mihai, Repovš, Dušan
Publikováno v:
Bull. Belg. Math. Soc. Simon Stevin 18:5 (2011), 839-847
We study an eigenvalue problem involving a degenerate and singular elliptic operator on the whole space $\mathbb{R}^N$. We prove the existence of an unbounded and increasing sequence of eigenvalues. Our study generalizes to the case of degenerate and
Externí odkaz:
http://arxiv.org/abs/1603.05039
Autor:
Mihailescu, Mihai, Radulescu, Vicentiu
Publikováno v:
Annales de l'Institut Fourier (2008) vol. 58
We study a nonlinear Neumann boundary value problem associated to a nonhomogeneous differential operator. Taking into account the competition between the nonlinearity and the bifurcation parameter, we establish sufficient conditions for the existence
Externí odkaz:
http://arxiv.org/abs/0712.2185