Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Miguel A Alcantar"'
Publikováno v:
Molecular Systems Biology, Vol 19, Iss 6, Pp 1-22 (2023)
Abstract In bacteria, natural transposon mobilization can drive adaptive genomic rearrangements. Here, we build on this capability and develop an inducible, self‐propagating transposon platform for continuous genome‐wide mutagenesis and the dynam
Externí odkaz:
https://doaj.org/article/32cd5e4f5b854b8a8c7b26deef4c5bc5
Autor:
Erica J. Zheng, Ian W. Andrews, Alexandra T. Grote, Abigail L. Manson, Miguel A. Alcantar, Ashlee M. Earl, James J. Collins
Publikováno v:
Nature Communications, Vol 13, Iss 1, Pp 1-11 (2022)
Antibiotic tolerance, or the ability of bacteria to survive antibiotic treatment in the absence of genetic resistance, often involves a low metabolic state. Here, Zheng et al. show that tolerance does not readily evolve against antibiotics whose effi
Externí odkaz:
https://doaj.org/article/7c9a36880bc84974902377009584c79c
Autor:
Jacqueline A. Valeri, Katherine M. Collins, Pradeep Ramesh, Miguel A. Alcantar, Bianca A. Lepe, Timothy K. Lu, Diogo M. Camacho
Publikováno v:
Nature Communications, Vol 11, Iss 1, Pp 1-14 (2020)
The design of synthetic biology circuits remains challenging due to poorly understood design rules. Here the authors introduce STORM and NuSpeak, two deep-learning architectures to characterize and optimize toehold switches.
Externí odkaz:
https://doaj.org/article/d92e1c3c09eb4750aa706310533722cf
Autor:
Rajiv Ramasawmy, Toby Rogers, Miguel A. Alcantar, Delaney R. McGuirt, Jaffar M. Khan, Peter Kellman, Hui Xue, Anthony Z. Faranesh, Adrienne E. Campbell-Washburn, Robert J. Lederman, Daniel A. Herzka
Publikováno v:
Journal of Cardiovascular Magnetic Resonance, Vol 20, Iss 1, Pp 1-10 (2018)
Abstract Background The hallmark of heart failure is increased blood volume. Quantitative blood volume measures are not conveniently available and are not tested in heart failure management. We assess ferumoxytol, a marketed parenteral iron supplemen
Externí odkaz:
https://doaj.org/article/d6fa3b86054d4da182c98c384f8541e4
Autor:
Andrés Cubillos-Ruiz, Miguel A. Alcantar, Nina M. Donghia, Pablo Cárdenas, Julian Avila-Pacheco, James J. Collins
Publikováno v:
Nature Biomedical Engineering. 6:910-921
Publikováno v:
PLoS Computational Biology, Vol 14, Iss 8, p e1006356 (2018)
Allosteric regulation has traditionally been described by mathematically-complex allosteric rate laws in the form of ratios of polynomials derived from the application of simplifying kinetic assumptions. Alternatively, an approach that explicitly des
Externí odkaz:
https://doaj.org/article/236d2f241ebb48b8a06c628e29c56c0f
Autor:
Miguel A. Alcantar, Katherine M. Collins, Diogo M. Camacho, Timothy K. Lu, Pradeep Ramesh, Jacqueline A. Valeri, Bianca Lepe
Publikováno v:
Nature Communications, Vol 11, Iss 1, Pp 1-14 (2020)
Nature Communications
Nature Communications
While synthetic biology has revolutionized our approaches to medicine, agriculture, and energy, the design of completely novel biological circuit components beyond naturally-derived templates remains challenging due to poorly understood design rules.
Autor:
Michael M, Kaminski, Miguel A, Alcantar, Isadora T, Lape, Robert, Greensmith, Allison C, Huske, Jacqueline A, Valeri, Francisco M, Marty, Verena, Klämbt, Jamil, Azzi, Enver, Akalin, Leonardo V, Riella, James J, Collins
Publikováno v:
Nature biomedical engineering. 4(6)
In organ transplantation, infection and rejection are major causes of graft loss. They are linked by the net state of immunosuppression. To diagnose and treat these conditions earlier, and to improve long-term patient outcomes, refined strategies for
Autor:
Leonardo V. Riella, Enver Akalin, Isadora T. Lape, Michael M. Kaminski, Verena Klämbt, James J. Collins, Jamil Azzi, Robert Greensmith, Jacqueline A. Valeri, Francisco M. Marty, Allison C. Huske, Miguel A. Alcantar
Publikováno v:
Prof. Collins via Howard Silver
In organ transplantation, infection and rejection are major causes of graft loss. They are linked by the net state of immunosuppression. To diagnose and treat these conditions earlier, and to improve long-term patient outcomes, refined strategies for
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9617439fecc13644eb7e8e2e402d251d
https://hdl.handle.net/1721.1/125918
https://hdl.handle.net/1721.1/125918
Autor:
Douglas McCloskey, Allison J. Lopatkin, Lars Schrübbers, Sarah N Wright, Graham C. Walker, Sangeeta Satish, Bernhard O. Palsson, Amir Nili, Miguel A. Alcantar, Meagan Hamblin, Jason H. Yang, James J. Collins
Publikováno v:
PMC
Cell
Yang, J H, Wright, S N, Hamblin, M, McCloskey, D, Alcantar, M A, Schrübbers, L, Lopatkin, A J, Satish, S, Nili, A, Palsson, B O, Walker, G C & Collins, J J 2019, ' A White-Box Machine Learning Approach for Revealing Antibiotic Mechanisms of Action ', Cell, vol. 177, no. 6, pp. 1649-1661.e9 . https://doi.org/10.1016/j.cell.2019.04.016
Cell
Yang, J H, Wright, S N, Hamblin, M, McCloskey, D, Alcantar, M A, Schrübbers, L, Lopatkin, A J, Satish, S, Nili, A, Palsson, B O, Walker, G C & Collins, J J 2019, ' A White-Box Machine Learning Approach for Revealing Antibiotic Mechanisms of Action ', Cell, vol. 177, no. 6, pp. 1649-1661.e9 . https://doi.org/10.1016/j.cell.2019.04.016
© 2019 Elsevier Inc. Current machine learning techniques enable robust association of biological signals with measured phenotypes, but these approaches are incapable of identifying causal relationships. Here, we develop an integrated “white-box”
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a17b6e733d1b694dcad766ea0231ee40
https://hdl.handle.net/1721.1/135182
https://hdl.handle.net/1721.1/135182