Zobrazeno 1 - 10
of 72
pro vyhledávání: '"Miglierina, Enrico"'
We construct a weakly compact convex subset of $\ell^2$ with nonempty interior that has an isolated maximal element, with respect to the lattice order $\ell _+^2$. Moreover, the maximal point cannot be supported by any strictly positive functional, s
Externí odkaz:
http://arxiv.org/abs/2407.10509
The spaces $W_\alpha$ are the Banach spaces whose duals are isometric to $\ell_1$ and such that the standard basis of $\ell_1$ is $w^*$-convergent to $\alpha\in \ell_1$. The core result of our paper proves that an $\ell_1$-predual $X$ contains isomet
Externí odkaz:
http://arxiv.org/abs/2401.04819
In a normed space setting, this paper studies the conditions under which the projected solutions to a quasi equilibrium problem with non-self constraint map exist. Our approach is based on an iterative algorithm which gives rise to a sequence such th
Externí odkaz:
http://arxiv.org/abs/2303.08608
Given a strictly convex multiobjective optimization problem with objective functions $f_1,\dots,f_N$, let us denote by $x_0$ its solution, obtained as minimum point of the linear scalarized problem, where the objective function is the convex combinat
Externí odkaz:
http://arxiv.org/abs/2303.01797
We provide a concrete isometric description of all the preduals of $\ell_1$ for which the standard basis in $\ell_1$ has a finite number of $w^*$-limit points. Then, we apply this result to give an example of an $\ell_1$-predual $X$ such that its dua
Externí odkaz:
http://arxiv.org/abs/2209.05116
Let us consider two sequences of closed convex sets $\{A_n\}$ and $\{B_n\}$ converging with respect to the Attouch-Wets convergence to $A$ and $B$, respectively. Given a starting point $a_0$, we consider the sequences of points obtained by projecting
Externí odkaz:
http://arxiv.org/abs/2007.12486
First we prove that if a separable Banach space $X$ contains an isometric copy of an infinite-dimensional space $A(S)$ of affine continuous functions on a Choquet simplex $S$, then its dual $X^*$ lacks the weak$^*$ fixed point property for nonexpansi
Externí odkaz:
http://arxiv.org/abs/1911.02872
The 2-sets convex feasibility problem aims at finding a point in the nonempty intersection of two closed convex sets $A$ and $B$ in a Hilbert space $X$. The method of alternating projections is the simplest iterative procedure for finding a solution
Externí odkaz:
http://arxiv.org/abs/1907.13402
The 2-sets convex feasibility problem aims at finding a point in the intersection of two closed convex sets $A$ and $B$ in a normed space $X$. More generally, we can consider the problem of finding (if possible) two points in $A$ and $B$, respectivel
Externí odkaz:
http://arxiv.org/abs/1806.10033
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.