Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Mietka, Colin"'
Publikováno v:
Nonlinearity, 34, No. 1, pp. 578--641 (2021)
Motivated by the ongoing study of dispersive shock waves in non integrable systems, we propose and analyze a set of wave parameters for periodic waves of a large class of Hamiltonian partial differential systems -- including the generalized Korteweg
Externí odkaz:
http://arxiv.org/abs/1911.10067
Autor:
Mietka, Colin
La première partie de cette thèse concerne l'étude du problème de Cauchy pour l'équation de KdV quasi-linéaire.On établit un théorème d'existence locale obtenu grâce à des propriétés structurelles et des techniques de jauge qui permetten
Externí odkaz:
http://www.theses.fr/2017LYSE1031/document
Publikováno v:
Indiana University Mathematics Journal, 69, No. 2, pp.545--619 (2020)
Stability criteria have been derived and investigated in the last decades for many kinds of periodic traveling wave solutions to Hamiltonian PDEs. They turned out to depend in a crucial way on the negative signature of the Hessian matrix of action in
Externí odkaz:
http://arxiv.org/abs/1710.03936
Autor:
Mietka, Colin
The Korteweg-de Vries equation (KdV) and various generalized, most often semi- linear versions have been studied for about 50 years. Here, the focus is made on a quasi-linear generalization of the KdV equation, which has a fairly general Hamil- tonia
Externí odkaz:
http://arxiv.org/abs/1601.00779
The stability of periodic traveling wave solutions to dispersive PDEs with respect to `arbitrary' perturbations is still widely open. The focus is put here on stability with respect to perturbations of the same period as the wave, for KdV-like system
Externí odkaz:
http://arxiv.org/abs/1505.01382
Autor:
Bondesan Andrea, Dellacherie Stéphane, Hivert Hélène, Jung Jonathan, Lleras Vanessa, Mietka Colin, Penel Yohan
Publikováno v:
ESAIM: Proceedings and Surveys, Vol 55, Pp 41-60 (2016)
This paper deals with the numerical treatment of two additional terms in the Lmnc-system modelling the coolant in a nuclear reactor core. The latter model was derived and studied by the authors in previous publications. On the one hand, we investigat
Externí odkaz:
https://doaj.org/article/3da4331fc4d3427fadf12d218934d163
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
This paper is devoted to the theoretical and the numerical studies of the radiation 4 of an acoustic source in a general homentropic flow. As a linearized model, we consider Goldstein's 5 Equations, which extend the usual potential model to vortical
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::034bac3f612232dcdd12d2255fcc35d5
https://hal.inria.fr/hal-01663949/document
https://hal.inria.fr/hal-01663949/document
Autor:
Mietka, Colin
Publikováno v:
Equations aux dérivées partielles [math.AP]. Université de Lyon, 2017. Français. ⟨NNT : 2017LYSE1031⟩
Equations aux dérivées partielles [math.AP]. Université de Lyon, 2017. Français. 〈NNT : 2017LYSE1031〉
Equations aux dérivées partielles [math.AP]. Université de Lyon, 2017. Français. 〈NNT : 2017LYSE1031〉
The first part of this manuscript presents a well-posedness result for a quasilinear version of the KdV equation.The proof takes advantage of structural properties and gauge techniques to deal with apparent loss of derivativesin a priori estimates.In
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::b42310de82f0658ed8c107ed9005f025
https://tel.archives-ouvertes.fr/tel-01537619
https://tel.archives-ouvertes.fr/tel-01537619
Autor:
Colin Mietka
The Korteweg-de Vries equation (KdV) and various generalized, most often semi- linear versions have been studied for about 50 years. Here, the focus is made on a quasi-linear generalization of the KdV equation, which has a fairly general Hamil- tonia
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d07f74725631c7faceec0ceea928d1ff