Zobrazeno 1 - 1
of 1
pro vyhledávání: '"Mielewczyk, Łukasz"'
Let $r$ be a point in the first quadrant $Q_1$ of the plane $\mathbb{R}^2$ and let $P \subset Q_1$ be a set of points such that for any $p \in P$, its $x$- and $y$-coordinate is at least as that of $r$. A rectilinear Steiner arborescence for $P$ with
Externí odkaz:
http://arxiv.org/abs/2210.04576