Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Miek Messerschmidt"'
Publikováno v:
ter Horst, S, Messerschmidt, M & Ran, A C M 2020, ' Equivalence After Extension and Schur Coupling for Relatively Regular Operators ', Integral Equations and Operator Theory, vol. 92, no. 5, 40, pp. 1-23 . https://doi.org/10.1007/s00020-020-02597-2
Integral Equations and Operator Theory, 92(5):40, 1-23. Birkhauser Verlag Basel
Integral Equations and Operator Theory, 92(5):40, 1-23. Birkhauser Verlag Basel
It was recently shown in [24] that the Banach space operator relations Equivalence After Extension (EAE) and Schur Coupling (SC) do not coincide by characterizing these relations for operators acting on essentially incomparable Banach spaces. The exa
Autor:
Miek Messerschmidt
Publikováno v:
Journal of Functional Analysis. 275:3325-3337
A version of the classical Klee-And\^o Theorem states the following: For every Banach space $X$, ordered by a closed generating cone $C\subseteq X$, there exists some $\alpha>0$ so that, for every $x\in X$, there exist $x^{\pm}\in C$ so that $x=x^{+}
Autor:
Miek Messerschmidt
By a compact packing of the plane by discs, $P$, we mean a collection of closed discs in the plane with pairwise disjoint interior so that, for every disc $C\in P$, there exists a sequence of discs $D_{0},\ldots,D_{m-1}\in P$ so that each $D_{i}$ is
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::55b383b315a9b0105b255ae576297e64
Publikováno v:
ter Horst, S, Messerschmidt, M, Ran, A C M, Roelands, M & Wortel, M 2018, ' Equivalence after extension and Schur coupling coincide for inessential operators ', Indagationes Mathematicae, vol. 29, no. 5, pp. 1350-1361 . https://doi.org/10.1016/j.indag.2018.07.001
Indagationes Mathematicae, 29(5), 1350-1361. Elsevier
Indagationes Mathematicae, 29(5), 1350-1361. Elsevier
In recent years the coincidence of the operator relations equivalence after extension (EAE) and Schur coupling (SC) was settled for the Hilbert space case. For Banach space operators, it is known that SC implies EAE, but the converse implication is o
This proceedings volume features selected contributions from the conference Positivity X. The field of positivity deals with ordered mathematical structures and their applications. At the biannual series of Positivity conferences, the latest developm
Autor:
Miek Messerschmidt
Publikováno v:
Set-Valued and Variational Analysis. 27:223-240
We prove that any correspondence (multi-function) mapping a metric space into a Banach space that satisfies a certain pointwise Lipschitz condition, always has a continuous selection that is pointwise Lipschitz on a dense set of its domain. We apply
Autor:
Miek Messerschmidt
Publikováno v:
Trends in Mathematics ISBN: 9783030108496
Consider the following still-open problem: for any Banach space X, ordered by a closed generating cone C ⊆ X, do there always exist Lipschitz functions ⋅+ : X → C and ⋅− : X → C satisfying x = x+ − x− for every x ∈ X?
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::da635519c6e2b5c9f43da9d89d51cb6f
https://doi.org/10.1007/978-3-030-10850-2_22
https://doi.org/10.1007/978-3-030-10850-2_22
Publikováno v:
Horst, S T, Messerschmidt, M, Ran, A C M & Roelands, M 2019, ' Equivalence after extension and Schur coupling do not coincide on essentially incomparable Banach spaces ', Bulletin of the London Mathematical Society, vol. 51, no. 6, pp. 1005-1014 . https://doi.org/10.1112/blms.12292
Bulletin of the London Mathematical Society, 51(6), 1005-1014. Oxford University Press
Bulletin of the London Mathematical Society, 51(6), 1005-1014. Oxford University Press
In 1994 H. Bart and V.\'{E}. Tsekanovskii posed the question whether the Banach space operator relations matricial coupling (MC), equivalence after extension (EAE) and Schur coupling (SC) coincide, leaving only the implication EAE/MC $\Rightarrow$ SC
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8c982831d8c1b214bc5b4bcf38c3b849
https://hdl.handle.net/10394/33600
https://hdl.handle.net/10394/33600
Autor:
Miek Messerschmidt
A compact circle-packing $P$ of the Euclidean plane is a set of circles which bound mutually disjoint open discs with the property that, for every circle $S\in P$, there exists a maximal indexed set $\{A_{0},\ldots,A_{n-1}\}\subseteq P$ so that, for
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::be680b87ff8293322c774e07fe3d80c4
http://arxiv.org/abs/1709.03487
http://arxiv.org/abs/1709.03487
Publikováno v:
Journal of Mathematical Analysis and Applications, 431(1), 136-149. Academic Press Inc.
van der Horst, S, Messerschmidt, M & Ran, A C M 2015, ' Equivalence after extension for compact operators on Banach spaces ', Journal of Mathematical Analysis and Applications, vol. 431, no. 1, pp. 136-149 . https://doi.org/10.1016/j.jmaa.2015.05.059
van der Horst, S, Messerschmidt, M & Ran, A C M 2015, ' Equivalence after extension for compact operators on Banach spaces ', Journal of Mathematical Analysis and Applications, vol. 431, no. 1, pp. 136-149 . https://doi.org/10.1016/j.jmaa.2015.05.059
In recent years the coincidence of the operator relations equivalence after extension and Schur coupling was settled for the Hilbert space case, by showing that equivalence after extension implies equivalence after one-sided extension. In the present
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::351f0d421e6a93fb1607e305823f14eb
http://arxiv.org/abs/1503.07350
http://arxiv.org/abs/1503.07350