Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Michi-aki Inaba"'
Publikováno v:
Comptes Rendus. Mathématique. 359(5):617-624
We describe some results on moduli space of logarithmic connections equipped with framings on a $n$-pointed compact Riemann surface.
Final version; to appear in Comptes Rendus S\'erie Math\'ematique
Final version; to appear in Comptes Rendus S\'erie Math\'ematique
Autor:
Michi-aki Inaba
Publikováno v:
Sugaku Expositions. 30:1-15
Autor:
Michi-aki Inaba
We introduce an unfolded moduli space of connections, which is an algebraic relative moduli space of connections on complex smooth projective curves, whose generic fiber is a moduli space of regular singular connections and whose special fiber is a m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9200c2818a97bdcc13ce0cd8f98575d0
http://arxiv.org/abs/1903.08396
http://arxiv.org/abs/1903.08396
Autor:
Michi-aki Inaba, Masa-Hiko Saito
Publikováno v:
J. Math. Soc. Japan 70, no. 3 (2018), 879-894
We define a moduli space of stable regular singular parabolic connections with given spectral type on smooth projective curves and show the smoothness of the moduli space and give a relative symplectic structure on the moduli space. Moreover, we defi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bc32d82f4496bc1a510fd798bcdde36e
https://projecteuclid.org/euclid.jmsj/1527795357
https://projecteuclid.org/euclid.jmsj/1527795357
Autor:
Michi-aki Inaba
Publikováno v:
Journal of Algebraic Geometry. 22(3):407-480
Let ( C , t ) (C,\mathbf {t}) ( t = ( t 1 , … , t n ) \mathbf {t}=(t_1,\ldots ,t_n) ) be an n n -pointed smooth projective curve of genus g g and take an element λ = ( λ j ( i ) ) ∈ C n r \boldsymbol {\lambda }=(\lambda ^{(i)}_j)\in \mathbf {C}
Autor:
Michi-Aki Inaba
We give an algebraic construction of the moduli space of irregular singular connections of generic ramified type on a smooth projective curve. We prove that the moduli space is smooth and give its dimension. Under the assumption that the exponent of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e29b3d68a1699e0f8288baf79e44815f
http://arxiv.org/abs/1606.02369
http://arxiv.org/abs/1606.02369
Autor:
Michi-aki Inaba
Publikováno v:
Journal of Algebraic Geometry. 13:1-27
We study the moduli space of stable sheaves on a projective scheme whose structure sheaf has a nilpotent ideal with some property. We introduce a stratification on this moduli space. Each stratum is the moduli space of some extensions of sheaves. Thi
Autor:
Michi-aki Inaba
Publikováno v:
Nagoya Math. J. 166 (2002), 135-181
We study the moduli space of stable sheaves on a reducible projective scheme by use of a suitable stratification of the moduli space. Each stratum is the moduli space of “triples”, which is the main object investigated in this paper. As an applic
Autor:
Michi-aki Inaba, Masa-Hiko Saito
Publikováno v:
Kyoto J. Math. 53, no. 2 (2013), 433-482
In this paper we construct a coarse moduli scheme of stable unramified irregular singular parabolic connections on a smooth projective curve and prove that the constructed moduli space is smooth and has a symplectic structure. Moreover we will constr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4357517c850109772912b602fa3335ce
http://arxiv.org/abs/1203.0084
http://arxiv.org/abs/1203.0084
Autor:
Michi-aki Inaba
For an abelian or a projective K3 surface $X$ over an algebraically closed field $k$, consider the moduli space $\splcpx_{X/k}\uet$ of the objects $E$ in $D^b(\mathrm{Coh}(X))$ satisfying $\Ext^{-1}_X(E,E)=0$ and $\Hom(E,E)\cong k$. Then we can prove
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4601bb76c8151948dbf7cb768f9d3670