Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Michelitsch, T. M."'
Publikováno v:
International Journal of Modern Physics C, 2450037 (2023)
One dominant aspect of cities is transport and massive passenger mobilization which remains a challenge with the increasing demand on the public as cities grow. In addition, public transport infrastructure suffers from traffic congestion and deterior
Externí odkaz:
http://arxiv.org/abs/2111.14979
Publikováno v:
J. Stat. Mech. (2021) 063401
In this paper, we explore the reduction of functionality in a complex system as a consequence of cumulative random damage and imperfect reparation, a phenomenon modeled as a dynamical process on networks. We analyze the global characteristics of the
Externí odkaz:
http://arxiv.org/abs/2012.00205
Publikováno v:
Phys. Rev. E 102, 022142 (2020)
In this paper, we study nonlocal random walk strategies generated with the fractional Laplacian matrix of directed networks. We present a general approach to analyzing these strategies by defining the dynamics as a discrete-time Markovian process wit
Externí odkaz:
http://arxiv.org/abs/2004.00575
Publikováno v:
Phys. Rev. E 100, 022312 (2019)
In this paper we explore the evolution of transport capacity on networks with stochastic incidence of damage and accumulation of faults in their connections. For each damaged configuration of the network, we analyze a Markovian random walker that hop
Externí odkaz:
http://arxiv.org/abs/1909.01493
In this paper, we explore different Markovian random walk strategies on networks with transition probabilities between nodes defined in terms of functions of the Laplacian matrix. We generalize random walk strategies with local information in the Lap
Externí odkaz:
http://arxiv.org/abs/1712.04256
Publikováno v:
T M Michelitsch et al 2017 J. Phys. A: Math. Theor. 50 505004
We analyze a random walk strategy on undirected regular networks involving power matrix functions of the type $L^{\frac{\alpha}{2}}$ where $L$ indicates a `simple' Laplacian matrix. We refer such walks to as `Fractional Random Walks' with admissible
Externí odkaz:
http://arxiv.org/abs/1707.05843
A new mathematical model for non-equilibrium evaporation/condensation including boiling effect is proposed. A simplified differential-algebraic system of equations is obtained. A code to solve numerically this differential-algebraic system has been d
Externí odkaz:
http://arxiv.org/abs/1707.01497
Publikováno v:
Elsevier, 2016, 92, pp.43-50
We develop physically admissible lattice models in the harmonic approximation which define by Hamilton's variational principle fractional Laplacian matrices of the forms of power law matrix functions on the n -dimensional periodic and infinite lattic
Externí odkaz:
http://arxiv.org/abs/1610.03744
Publikováno v:
International Journal of Modern Physics C: Computational Physics & Physical Computation; Apr2024, Vol. 35 Issue 4, p1-17, 17p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.