Zobrazeno 1 - 10
of 53
pro vyhledávání: '"Michela Cameletti"'
Autor:
Alessandro Fassò, Jacopo Rodeschini, Alessandro Fusta Moro, Qendrim Shaboviq, Paolo Maranzano, Michela Cameletti, Francesco Finazzi, Natalia Golini, Rosaria Ignaccolo, Philipp Otto
Publikováno v:
Scientific Data, Vol 10, Iss 1, Pp 1-16 (2023)
Abstract The air in the Lombardy region, Italy, is one of the most polluted in Europe because of limited air circulation and high emission levels. There is a large scientific consensus that the agricultural sector has a significant impact on air qual
Externí odkaz:
https://doaj.org/article/ba6f48b1c2a54b73a7ae01b4c0e9b843
Autor:
Garyfallos Konstantinoudis, Michela Cameletti, Virgilio Gómez-Rubio, Inmaculada León Gómez, Monica Pirani, Gianluca Baio, Amparo Larrauri, Julien Riou, Matthias Egger, Paolo Vineis, Marta Blangiardo
Publikováno v:
Nature Communications, Vol 13, Iss 1, Pp 1-11 (2022)
In this study, the authors estimate excess mortality at the regional level for five European countries (England, Greece, Italy, Spain, and Switzerland) in 2020. They identify the regions and time periods with highest excess mortality and show how the
Externí odkaz:
https://doaj.org/article/9e2256c515a848bea8590dbd95cf573a
Publikováno v:
Journal of Statistical Software, Vol 100, Pp 1-7 (2021)
In this summary we introduce the papers published in the special issue on Bayesian statistics. This special issue comprises 20 papers on Bayesian statistics and Bayesian inference on different topics such as general packages for hierarchical linear m
Externí odkaz:
https://doaj.org/article/73c6dc33ba05493fbca05f2cb822888a
Autor:
Michela Cameletti, Franco Biondi
Publikováno v:
Arctic, Antarctic, and Alpine Research, Vol 51, Iss 1, Pp 115-127 (2019)
Environmental processes, including climatic impacts in cold regions, are typically acting at multiple spatial and temporal scales. Hierarchical models are a flexible statistical tool that allows for decomposing spatiotemporal processes in simpler com
Externí odkaz:
https://doaj.org/article/3821d677ab184b0582e805863403a02f
Autor:
Marta Blangiardo, Michela Cameletti, Monica Pirani, Gianni Corsetti, Marco Battaglini, Gianluca Baio
Publikováno v:
PLoS ONE, Vol 15, Iss 10, p e0240286 (2020)
In this study we present the first comprehensive analysis of the spatio-temporal differences in excess mortality during the COVID-19 pandemic in Italy. We used a population-based design on all-cause mortality data, for the 7,904 Italian municipalitie
Externí odkaz:
https://doaj.org/article/9346b2c153434a16bf2d873e28fceae0
Publikováno v:
Journal of Open Innovation: Technology, Market and Complexity, Vol 7, Iss 44, p 44 (2021)
In the era of Big Data, the Internet has become one of the main data sources: Data can be collected for relatively low costs and can be used for a wide range of purposes. To be able to timely support solid decisions in any field, it is essential to i
Externí odkaz:
https://doaj.org/article/ad7dda3cd752411285e8230f905289b2
Publikováno v:
Environmetrics. 33
Autor:
Garyfallos, Konstantinoudis, Virgilio, Gómez-Rubio, Michela, Cameletti, Monica, Pirani, Gianluca, Baio, Marta, Blangiardo
Publikováno v:
ArXiv
article-version (number) 1
article-version (status) pre
article-version (number) 1
article-version (status) pre
COVID-19 related deaths underestimate the pandemic burden on mortality because they suffer from completeness and accuracy issues. Excess mortality is a popular alternative, as it compares observed with expected deaths based on the assumption that the
Autor:
Franco Bazzoli, Daniela Turchetti, Michela Cameletti, Luigi Ricciardiello, Sara Miccoli, Amedeo Montale, Dora Colussi, Francesco Buttitta, Chiara Pierantoni, Clarissa Ferrari
Background: Endoscopic surveillance in patients with Lynch syndrome (LS) is crucial due to a genetically based high risk of colorectal cancer (CRC). We aimed to compare the adenoma detection rate (ADR) between high-resolution white light endoscopy (W
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c46b48607eefa8089d2f59a15f35d456
http://hdl.handle.net/10446/198848
http://hdl.handle.net/10446/198848
Autor:
Matthias Egger, Paolo Vineis, Monica Pirani, Julien Riou, Virgilio Gómez-Rubio, Gianluca Baio, Marta Blangiardo, Michela Cameletti, Amparo Larrauri, Garyfallos Konstantinoudis, Inmaculada León Gómez
The impact of the COVID-19 pandemic on excess mortality from all causes in 2020 varied across and within European countries. Using data for 2015-2019, we applied Bayesian spatio-temporal models to quantify the expected weekly deaths at the regional l
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8d07dfb842b7008de53c88292aaee785
https://doi.org/10.1101/2021.10.18.21264686
https://doi.org/10.1101/2021.10.18.21264686