Zobrazeno 1 - 2
of 2
pro vyhledávání: '"Michel-Niklas Senn"'
It is a well-known fact that the Krylov space $\mathcal{K}_j(H,x)$ generated by a skew-Hamiltonian matrix $H \in \mathbb{R}^{2n \times 2n}$ and some $x \in \mathbb{R}^{2n}$ is isotropic for any $j \in \mathbb{N}$. For any given isotropic subspace $\m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5b7a3d50133075e10a14a2855305d6bf
Publikováno v:
University of Wyoming Open Journals
The Electronic Journal of Linear Algebra
The Electronic Journal of Linear Algebra
An algorithm for constructing a $J$-orthogonal basis of the extended Krylov subspace$\mathcal{K}_{r,s}=\operatorname{range}\{u,Hu, H^2u,$ $ \ldots, $ $H^{2r-1}u, H^{-1}u, H^{-2}u, \ldots, H^{-2s}u\},$where $H \in \mathbb{R}^{2n \times 2n}$ is a large
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::16acf70970ccf50bc023ac77178fb501
https://journals.uwyo.edu/index.php/ela/article/view/6977
https://journals.uwyo.edu/index.php/ela/article/view/6977