Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Michel Raibaut"'
Publikováno v:
Mathematische Zeitschrift. 299:591-669
In this article we give an expression of the motivic Milnor fiber at infinity and the motivic nearby cycles at infinity of a polynomial f in two variables with coefficients in an algebraic closed field of characteristic zero. This expression is given
Autor:
Lorenzo Fantini, Michel Raibaut
In this paper we use motivic integration and non-archimedean analytic geometry to study the singularities at infinity of the fibers of a polynomial map $f\colon \mathbb A^d_\mathbb C \to \mathbb A^1_\mathbb C$. We show that the motive $S_{f,a}^{\inft
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3d037b765da31611ed7a4119df7981e7
https://doi.org/10.1142/9781786347206_0012
https://doi.org/10.1142/9781786347206_0012
Autor:
Michel Raibaut
The concept of wave front set was introduced in 1969–1970 by Sato in the hyperfunctions context [1, 34] and by Hörmander [23] in the $\mathcal C^{\infty }$ context. Howe in [25] used the theory of wave front sets in the study of Lie groups represe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f7f1f15d9293a62d7cc6d37adc015206
http://arxiv.org/abs/1810.10567
http://arxiv.org/abs/1810.10567
Publikováno v:
Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics
Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics, Springer International Publishing, pp.145-189, 2018, ⟨10.1007/978-3-319-96827-8_7⟩
Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics ISBN: 9783319968261
Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics, Springer International Publishing, pp.145-189, 2018, ⟨10.1007/978-3-319-96827-8_7⟩
Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics ISBN: 9783319968261
In this article we give an expression of the motivic Milnor fiber at the origin of a polynomial in two variables with coefficients in an algebraically closed field. The expression is given in terms of some motives associated to the faces of the Newto
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c8bf2825ad9a6371eef9d633273beeb4
https://hal.archives-ouvertes.fr/hal-02496232
https://hal.archives-ouvertes.fr/hal-02496232
Autor:
Michel Raibaut, Jorge Cely
In this article, we study the commutativity between the pull-back and the push-forward functors on constructible functions in Cluckers--Loeser motivic integration.
Comment: arXiv admin note: substantial text overlap with arXiv:1810.10567
Comment: arXiv admin note: substantial text overlap with arXiv:1810.10567
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bab73ba83b8fe2cf7c4fc643f2c31485
Autor:
Michel Raibaut
Publikováno v:
Annales de l’institut Fourier. 62:1943-1981
Autor:
Michel Raibaut
Publikováno v:
Bulletin de la Société mathématique de France. 140:51-100
Soit k un corps de caracteristique nulle et f une fonction non constante definie sur une variete lisse. Nous definissons dans cet article une fibre de Milnor motivique a l'infini qui appartient a un anneau de Grothendieck des varietes. Elle est defin
Autor:
Michel Raibaut
Publikováno v:
Comptes Rendus Mathematique. 348:419-422
Resume Pour une application reguliere f : U → A 1 a source lisse, nous definissons une fibre de Milnor motivique a l'infini et nous la calculons dans le cas d'un polynome de Laurent non degenere pour son polyedre de Newton a l'infini.
Publikováno v:
Algebraic Geometry
In this paper we determine the stringy motivic volume of log terminal horospherical $G$-varieties of complexity one, where $G$ is a connected reductive linear algebraic group. The stringy motivic volume of a log terminal variety is an invariant of si
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7d2888c25e2a5d9082158da54465a368
Autor:
Michel Raibaut
Publikováno v:
Revista Matemática Complutense
Let P and Q be two complex polynomials and f be the induced rational function. In this Note we define a motivic Milnor fiber of the germ of f at an indeterminacy point x for a value a, a motivic Milnor fiber of f for a value a and finally motivic bif