Zobrazeno 1 - 10
of 58
pro vyhledávání: '"Michel Crouzeix"'
We provide numerical bounds on the Crouzeix ratiofor KLS matrices $A$ which have a line segment on the boundary of the numerical range. The Crouzeix ratio is the supremum over all polynomials $p$ of the spectral norm of $p(A)$ dividedby the maximum a
Externí odkaz:
http://arxiv.org/abs/2311.13890
Publikováno v:
Bulletin of the London Mathematical Society. 50:986-996
We study different operator radii of homomorphisms from an operator algebra into $B(H)$ and show that these can be computed explicitly in terms of the usual norm. As an application, we show that if $\Omega$ is a $K$-spectral set for a Hilbert space o
Autor:
Cesar Palencia, Michel Crouzeix
Publikováno v:
SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications, Society for Industrial and Applied Mathematics, 2017, 38 (2), pp.649-655. 〈10.1137/17M1116672〉
SIAM Journal on Matrix Analysis and Applications, Society for Industrial and Applied Mathematics, 2017, 38 (2), pp.649-655. ⟨10.1137/17M1116672⟩
SIAM Journal on Matrix Analysis and Applications, 2017, 38 (2), pp.649-655. ⟨10.1137/17M1116672⟩
SIAM Journal on Matrix Analysis and Applications, Society for Industrial and Applied Mathematics, 2017, 38 (2), pp.649-655. 〈10.1137/17M1116672〉
SIAM Journal on Matrix Analysis and Applications, Society for Industrial and Applied Mathematics, 2017, 38 (2), pp.649-655. ⟨10.1137/17M1116672⟩
SIAM Journal on Matrix Analysis and Applications, 2017, 38 (2), pp.649-655. ⟨10.1137/17M1116672⟩
8 pages; International audience; It is shown that the numerical range of a linear operator operator in a Hilbert space is a (complete) $(1{+}\sqrt2)$-spectral set. The proof relies, among other things, in the behavior of the Cauchy transform of the c
Autor:
Michel Crouzeix, Anne Greenbaum
Publikováno v:
SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications, Society for Industrial and Applied Mathematics, 2019, 40 (3), pp.1087-1101. ⟨10.1137/18M1198417⟩
SIAM Journal on Matrix Analysis and Applications, 2019, 40 (3), pp.1087-1101. ⟨10.1137/18M1198417⟩
SIAM Journal on Matrix Analysis and Applications, Society for Industrial and Applied Mathematics, 2019, 40 (3), pp.1087-1101. ⟨10.1137/18M1198417⟩
SIAM Journal on Matrix Analysis and Applications, 2019, 40 (3), pp.1087-1101. ⟨10.1137/18M1198417⟩
We extend the proof in [M.~Crouzeix and C.~Palencia, {\em The numerical range is a $(1 + \sqrt{2})$-spectral set}, SIAM Jour.~Matrix Anal.~Appl., 38 (2017), pp.~649-655] to show that other regions in the complex plane are $K$-spectral sets. In partic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::70a0ab350653b0e21da2fb2941c03932
https://hal.archives-ouvertes.fr/hal-01762100
https://hal.archives-ouvertes.fr/hal-01762100
Publikováno v:
Numerical Methods for Partial Differential Equations. 31:439-458
The inf-sup constant for the divergence, or LBB constant, is related to the Cosserat spectrum. It has been known for a long time that on non-smooth domains the Cosserat operator has a non-trivial essential spectrum, which can be used to bound the LBB
Autor:
Michel Crouzeix
Publikováno v:
Linear and Multilinear Algebra
Linear and Multilinear Algebra, Taylor & Francis, 2008, 56 (1-2), pp.81-103. 〈10.1080/03081080701336610〉
Linear and Multilinear Algebra, Taylor & Francis, 2008, 56 (1-2), pp.81-103. ⟨10.1080/03081080701336610⟩
Linear and Multilinear Algebra, 2008, 56 (1-2), pp.81-103. ⟨10.1080/03081080701336610⟩
Linear and Multilinear Algebra, Taylor & Francis, 2008, 56 (1-2), pp.81-103. 〈10.1080/03081080701336610〉
Linear and Multilinear Algebra, Taylor & Francis, 2008, 56 (1-2), pp.81-103. ⟨10.1080/03081080701336610⟩
Linear and Multilinear Algebra, 2008, 56 (1-2), pp.81-103. ⟨10.1080/03081080701336610⟩
International audience; We develop a functional calculus for both bounded and unbounded operators in Hilbert spaces based on a simple inequality related to polynomial functions of a square matrix and involving the numerical range. We present some app
Autor:
Michel Crouzeix, Monique Combescot
Publikováno v:
European Physical Journal B: Condensed Matter and Complex Systems
European Physical Journal B: Condensed Matter and Complex Systems, Springer-Verlag, 2016, 89 (7), 6 p. 〈10.1140/epjb/e2016-70029-3〉
The European Physical Journal B: Condensed Matter and Complex Systems
The European Physical Journal B: Condensed Matter and Complex Systems, 2016, 89 (7), 6 p. ⟨10.1140/epjb/e2016-70029-3⟩
The European Physical Journal B: Condensed Matter and Complex Systems, Springer-Verlag, 2016, 89 (7), 6 p. ⟨10.1140/epjb/e2016-70029-3⟩
European Physical Journal B: Condensed Matter and Complex Systems, Springer-Verlag, 2016, 89 (7), 6 p. 〈10.1140/epjb/e2016-70029-3〉
The European Physical Journal B: Condensed Matter and Complex Systems
The European Physical Journal B: Condensed Matter and Complex Systems, 2016, 89 (7), 6 p. ⟨10.1140/epjb/e2016-70029-3⟩
The European Physical Journal B: Condensed Matter and Complex Systems, Springer-Verlag, 2016, 89 (7), 6 p. ⟨10.1140/epjb/e2016-70029-3⟩
paper n° 164; International audience; We provide a compact expression of the ground-state energy of N-Cooper pairs valid from small to large sample volumes, as checked by numerically solving Richardson-Gaudin equations which give the exact eigenstat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9577abaa39e0258c20d1536268fa2f2e
https://hal.archives-ouvertes.fr/hal-01377509
https://hal.archives-ouvertes.fr/hal-01377509
Autor:
Michel Crouzeix
Publikováno v:
SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications, Society for Industrial and Applied Mathematics, 2016, 37 (1), pp.420-442
SIAM Journal on Matrix Analysis and Applications, 2016, 37 (1), pp.420-442
SIAM Journal on Matrix Analysis and Applications, Society for Industrial and Applied Mathematics, 2016, 37 (1), pp.420-442
SIAM Journal on Matrix Analysis and Applications, 2016, 37 (1), pp.420-442
International audience; In an attempt to progress towards proving the conjecture the numerical range W (A) is a 2–spectral set for the matrix A, we propose a study of various constants. We review some partial results; many problems are still open.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a4b55ec810f67a7147bf17105bcc83b3
https://hal.archives-ouvertes.fr/hal-01260082/document
https://hal.archives-ouvertes.fr/hal-01260082/document
Autor:
Michel Crouzeix
Publikováno v:
Integral Equations and Operator Theory. 48:461-477
If f is an analytic function bounded on a convex domain of the complex plane and A a square matrix whose spectrum is included in this domain, the function f(A) is well defined. In this paper we study bounds for ||f(A)|| uniform with respect to the fu
Autor:
Michel Crouzeix
Publikováno v:
Numerical Algorithms. 33:193-201
We consider the lumped mass method with piecewise linear finite elements in two dimensions. When the triangulation is of Delaunay type it is known that the discrete scheme satisfies a maximum principle. In this work we pursue the analysis and prove t