Zobrazeno 1 - 10
of 44
pro vyhledávání: '"Michel Cristofol"'
Autor:
Laure Cardoulis, Michel Cristofol
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 2012 (2012)
We consider the Dirichlet Laplacian operator −Δ on a curved quantum guide in ℝ n(n=2,3) with an asymptotically straight reference curve. We give uniqueness results for the inverse problem associated to the reconstruction of the curvature by usin
Externí odkaz:
https://doaj.org/article/341007c6d18444d096b8643be3fd5c52
Publikováno v:
Mathematical Methods in the Applied Sciences.
Publikováno v:
Mathematical Control and Related Fields
Mathematical Control and Related Fields, 2020, 10 (1), pp.189-215. ⟨10.3934/mcrf.2019036⟩
Mathematical Control & Related Fields
Mathematical Control & Related Fields, 2020, 10 (1), pp.189-215. ⟨10.3934/mcrf.2019036⟩
Mathematical Control and Related Fields, 2020, 10 (1), pp.189-215. ⟨10.3934/mcrf.2019036⟩
Mathematical Control & Related Fields
Mathematical Control & Related Fields, 2020, 10 (1), pp.189-215. ⟨10.3934/mcrf.2019036⟩
International audience; Prices of European call options in a regime-switching local-volatility model can be computed by solving a parabolic system which generalizes the classical Black and Scholes equation, giving these prices as functionals of the l
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::83d47dee9b20cb893a65f66913d8b4ba
https://hal.science/hal-03130973
https://hal.science/hal-03130973
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9783030486334
This proceedings volume gathers peer-reviewed, selected papers presented at the “Mathematical and Numerical Approaches for Multi-Wave Inverse Problems” conference at the Centre Internacional de Rencontres Mathematiques (CIRM) in Marseille, France
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b353217e0bdb6b514bef1dc7b3baad92
https://doi.org/10.1007/978-3-030-48634-1
https://doi.org/10.1007/978-3-030-48634-1
This proceedings volume gathers peer-reviewed, selected papers presented at the “Mathematical and Numerical Approaches for Multi-Wave Inverse Problems” conference at the Centre Internacional de Rencontres Mathématiques (CIRM) in Marseille, Franc
Publikováno v:
Mathematical Control and Related Fields
Mathematical Control and Related Fields, 2021, 11 (4), ⟨10.3934/mcrf.2020054⟩
Mathematical Control & Related Fields
Mathematical Control & Related Fields, 2021, 11 (4)
Mathematical Control and Related Fields, 2021, 11 (4), ⟨10.3934/mcrf.2020054⟩
Mathematical Control & Related Fields
Mathematical Control & Related Fields, 2021, 11 (4)
In this article we consider the inverse problem of determining the diffusion coefficient of the heat operator in an unbounded guide using a finite number of localized observations. For this problem, we prove a stability estimate in any finite portion
Autor:
Michel Cristofol, Laure Cardoulis
Publikováno v:
Applied Mathematics Letters
Applied Mathematics Letters, Elsevier, 2016, 62, pp.63-68. ⟨10.1016/j.aml.2016.06.015⟩
Applied Mathematics Letters, 2016, 62, pp.63-68. ⟨10.1016/j.aml.2016.06.015⟩
Applied Mathematics Letters, Elsevier, 2016, 62, pp.63-68. ⟨10.1016/j.aml.2016.06.015⟩
Applied Mathematics Letters, 2016, 62, pp.63-68. ⟨10.1016/j.aml.2016.06.015⟩
In this paper we prove a stability result for the reconstruction of the potential q associated with the operator ∂ t − Δ + q in an infinite guide using a finite number of localized observations.
Publikováno v:
Mathematical Methods in the Applied Sciences
Mathematical Methods in the Applied Sciences, 2018, 41 (5), pp.2012-2030. ⟨10.1002/mma.4728⟩
Mathematical Methods in the Applied Sciences, Wiley, 2018, 41 (5), pp.2012-2030. ⟨10.1002/mma.4728⟩
Mathematical Methods in the Applied Sciences, 2018, 41 (5), pp.2012-2030. ⟨10.1002/mma.4728⟩
Mathematical Methods in the Applied Sciences, Wiley, 2018, 41 (5), pp.2012-2030. ⟨10.1002/mma.4728⟩
arXiv admin note: text overlap with arXiv:1501.01384; International audience; This paper is devoted to the reconstruction of the conductivity coefficient for a nonautonomous hyperbolic operator an infinite cylindrical domain. Applying a local Carlema
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fa06b43786034685a28707968bb375da
https://hal.science/hal-01479160/document
https://hal.science/hal-01479160/document
Publikováno v:
Non Linear and Inverse Problems in Electromagnetics
Yu. G. Smirnov; L. Beilina. Non Linear and Inverse Problems in Electromagnetics, 243, Springer, pp.133-145, 2018, Springer Proceedings in Mathematics & Statistics, ⟨10.1007/978-3-319-94060-1_10⟩
Springer Proceedings in Mathematics & Statistics ISBN: 9783319940595
Yu. G. Smirnov; L. Beilina. Non Linear and Inverse Problems in Electromagnetics, 243, Springer, pp.133-145, 2018, Springer Proceedings in Mathematics & Statistics, ⟨10.1007/978-3-319-94060-1_10⟩
Springer Proceedings in Mathematics & Statistics ISBN: 9783319940595
Proceedings of PIERS 2017, St. Petersburg, Russia, May 22-25; International audience; This paper is devoted to the reconstruction of the time and space-dependent coefficient in an inverse hyperbolic problem in a bounded domain. Using a local Carleman
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::55a90b2e1399a9fdf78b2648a05705e7
https://hal.science/hal-03560881
https://hal.science/hal-03560881
Publikováno v:
Inverse Problems
Inverse Problems, IOP Publishing, 2018, 34 (1), ⟨10.1088/1361-6420/aa941d⟩
Inverse Problems, 2018, 34 (1), ⟨10.1088/1361-6420/aa941d⟩
Inverse Problems, IOP Publishing, 2018, 34 (1), ⟨10.1088/1361-6420/aa941d⟩
Inverse Problems, 2018, 34 (1), ⟨10.1088/1361-6420/aa941d⟩
International audience; We consider an inverse problem of reconstructing two spatially varying coefficients in an acoustic equation of hyperbolic type using interior data of solutions with suitable choices of initial condition. Using a Carleman estim
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::67db320ef084c223e4cef95ef340cb0e
https://hal.archives-ouvertes.fr/hal-01714738/document
https://hal.archives-ouvertes.fr/hal-01714738/document