Zobrazeno 1 - 10
of 278
pro vyhledávání: '"Michalski, Andrzej"'
Autor:
Michalski, Andrzej1 amichalski@ump.edu.pl, Dubas, Katarzyna2, Nogaj, Sławomir2,3, Stopa, Marcin1
Publikováno v:
NeuroRehabilitation. 2023, Vol. 53 Issue 1, p155-160. 6p. 1 Chart.
Publikováno v:
Potential Analysis; Jun2024, Vol. 61 Issue 1, p65-81, 17p
Autor:
Michalski, Andrzej
Publikováno v:
Studia z Teorii Wychowania / Studies on the Theory of Education. XI(3 (32)):101-121
Externí odkaz:
https://www.ceeol.com/search/article-detail?id=922667
Autor:
Przekoracka, Katarzyna *, Michalak, Krzysztof, Olszewski, Jan, Zeri, Fabrizio, Michalski, Andrzej, Paluch, Joanna, Przekoracka-Krawczyk, Anna
Publikováno v:
In Contact Lens and Anterior Eye February 2020 43(1):33-39
Autor:
Grządziel, Mariusz, Michalski, Andrzej
In the paper, the problem of the existence of the maximum likelihood estimate and the REML estimate in the variance components model is considered. Errors in the proof of Theorem 3.1 in the article of Demidenko and Massam (Sankhy\=a 61, 1999), giving
Externí odkaz:
http://arxiv.org/abs/1410.4787
In 1984, a simple and useful univalence criterion for harmonic functions was given by Clunie and Sheil-Small, which is usually called the shear construction. However, the application of this theorem is limited to the planar harmonic mappings convex i
Externí odkaz:
http://arxiv.org/abs/1409.7496
Let $\varphi$ be a self-map of the unit disk and let $C_\varphi$ denote the composition operator acting on the standard Dirichlet space $\mathcal{D}$. A necessary condition for compactness of a difference of two bounded composition operators acting o
Externí odkaz:
http://arxiv.org/abs/1409.7492
Autor:
Hotta, Ikkei, Michalski, Andrzej
Let $L_H$ denote the set of all normalized locally one-to-one and sense-preserving harmonic functions in the unit disc $\Delta$. It is well-known that every complex-valued harmonic function in the unit disc $\Delta$ can be uniquely represented as $f
Externí odkaz:
http://arxiv.org/abs/1404.1826
Autor:
Michalski, Andrzej
Publikováno v:
Studia z Teorii Wychowania / Studies on the Theory of Education. X(1 (26)):257-284
Externí odkaz:
https://www.ceeol.com/search/article-detail?id=764573
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.